Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes

Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
The Journal of Cell Biology (Impact Factor: 9.69). 08/2012; 198(4):545-560. DOI: 10.1083/jcb.201111091
Source: PubMed

ABSTRACT Rab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise
steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement
of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to
the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase
(IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM.
Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B,
and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning
peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10
coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dear Editor,Intracellular trafficking is a basis of cellular activities, including cell migration, immune response, and development (Lebreton et al., 2003; Lučin et al., 2014; Ulrich and Heisenberg, 2009). In healthy tissue, intracellular trafficking is highly regulated, controlling the form and function of cells (Furthauer and Gonzalez-Gaitan, 2009). Work carried out in animals and plants highlights that regulated intracellular trafficking is important for the development of multicellular organisms (Fürthauer and González-Gaitán, 2009; Kolotuev et al., 2009; Richter et al., 2009). As a family of Ras-related small GTPase, Rabs function as coordinators for diverse aspects of intracellular trafficking including vesicle budding and formation, cargo sorting and transport to target membranes, and recruitment of key molecules (Stenmark, 2009; Zerial and McBride, 2001).Rab10, widely distributed in intracellular membranes, is highly conserved from Caenorhabditis elegans (C. elegans) to humans. ...
    Protein & Cell 04/2015; DOI:10.1007/s13238-015-0150-8 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named endosome-associated recycling protein (EARP) that is structurally related to the previously described Golgi-associated retrograde protein (GARP) complex. The two complexes share the Ang2, Vps52 and Vps53 subunits, but EARP contains an uncharacterized protein, syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target SNARE syntaxin 6 and various cognate SNAREs. Depletion of syndetin or syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling.
    Nature Cell Biology 03/2015; DOI:10.1038/ncb3129 · 20.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular transport is largely driven by processive microtubule- and actin-based molecular motors. Nonprocessive motors have also been localized to trafficking cargos, but their roles are not well understood [1-7]. Myosin-Ic (Myo1c), a nonprocessive actin motor, functions in a variety of exocytic events, although the underlying mechanisms are not yet clear. To investigate the interplay between myosin-I and the canonical long-distance transport motor kinesin-1, we attached both motor types to lipid membrane-coated bead cargo, using an attachment strategy that allows motors to actively reorganize within the membrane in response to the local cytoskeletal environment. We compared the motility of kinesin-1-driven cargos in the absence and presence of Myo1c at engineered actin/microtubule intersections. We found that Myo1c significantly increases the frequency of kinesin-1-driven microtubule-based runs that begin at actin/microtubule intersections. Myo1c also regulates the termination of processive runs. Beads with both motors bound have a significantly higher probability of pausing at actin/microtubule intersections, remaining tethered for an average of 20 s, with some pauses lasting longer than 200 s. The actin-binding protein nonmuscle tropomyosin (Tm) provides spatially specific regulation of interactions between myosin motors and actin filaments in vivo [8-12]; in the crossed-filament in vitro assay, we found that Tm2-actin abolishes Myo1c-specific effects on both run initiation and run termination. Together, these observations suggest Myo1c is important for the selective initiation and termination of kinesin-1-driven runs along microtubules at specific actin filament populations within the cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Biology 02/2015; DOI:10.1016/j.cub.2014.12.008 · 9.92 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014