Transpirational demand affects aquaporin expression in poplar roots.

University of Alberta, Department of Renewable Resources, 4-42 Earth Sciences Building, Edmonton, AB, Canada, T6G 2E3.
Journal of Experimental Botany (Impact Factor: 5.79). 04/2013; DOI: 10.1093/jxb/ert096
Source: PubMed

ABSTRACT Isohydric plants tend to maintain a water potential homeostasis primarily by controlling water loss via stomatal conductance. However, there is accumulating evidence that plants can also modulate water uptake in a dynamic manner. The dynamics of water uptake are influenced by aquaporin-mediated changes in root hydraulics. Most studies in this area have been conducted on herbaceous plants, and less is known about responses of woody plants. Here a study was conducted to determine how roots of hybrid poplar plants (Populus trichocarpa×deltoides) respond to a step change in transpirational demand. The main objective was to measure the expression of selected aquaporin genes and to assess how transcriptional responses correspond to changes in root water flow (Q R) and other parameters of water relations. A subset of plants was grown in shade and was subsequently exposed to a 5-fold increase in light level. Another group of plants was grown at ~95% relative humidity (RH) and was then subjected to lower RH while the light level remained unchanged. Both plant groups experienced a transient drop in stem water potentials. At 28h after the increase in transpirational demand, water potentials recovered. This recovery was associated with changes in the expression of PIP1 and PIP2 subfamily genes and an increase in Q R. Stomata of plants growing at high RH were larger and showed incomplete closure after application of abscisic acid. Since stomatal conductance remained high and unchanged in these plants, it is suggested that the recovery in water potential in these plants was largely driven by the increase in Q R.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gas exchange is constrained by the whole-plant hydraulic conductance (K plant). Leaves account for an important fraction of K plant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (K leaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, K leaf recovered only 2 hours after plants were rewatered. Recovery of K leaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in K leaf . TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in K leaf . Citation: Laur J, Hacke UG (2014) The Role of Water Channel Proteins in Facilitating Recovery of Leaf Hydraulic Conductance from Water Stress in Populus trichocarpa. Copyright: ß 2014 Laur, Hacke. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. Funding: U. G. H. acknowledges funding from a Natural Sciences and Engineering Research Council (NSERC) Discovery grant, the Canada Foundation for Innovation and the Canada Research Chair program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 11/2014; 9(11). · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Changes in root and leaf hydraulic properties and stimulation of transpiration rates that were initially triggered by defoliation were accompanied by corresponding changes in leaf and root aquaporin expression. Aspen (Populus tremuloides) seedlings were subjected to defoliation treatments by removing 50, 75 % or all of the leaves. Root hydraulic conductivity (Lpr) was sharply reduced in plants defoliated for 1 day and 1 week. The decrease in L pr could not be prevented by stem girdling and it was accompanied in one-day-defoliated plants by a large decrease in the root expression of PIP1,2 aquaporin and an over twofold decrease in hydraulic conductivity of root cortical cells (L pc). Contrary to L pr and L pc, 50 and 75 % defoliation treatments profoundly increased leaf lamina conductance (K lam) after 1 day and this increase was similar in magnitude for both defoliation treatments. Transpiration rates (E) rapidly declined after the removal of 75 % of leaves. However, E increased by over twofold in defoliated plants after 1 day and the increases in E and K lam were accompanied by five- and tenfold increases in the leaf expression of PIP2;4 in 50 and 75 % defoliation treatments, respectively. Defoliation treatments also stimulated net photosynthesis after 1 day and 3 weeks, although the increase was not as high as E. Leaf water potentials remained relatively stable following defoliation with the exception of a small decrease 1 day after defoliation which suggests that root water transport did not initially keep pace with the increased transpirational water loss. The results demonstrate the importance of root and leaf hydraulic properties in plant responses to defoliation and point to the involvement of PIP aquaporins in the early events following the loss of leaves.
    Planta 06/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions.
    Journal of Experimental Botany 05/2014; · 5.79 Impact Factor


Available from
May 27, 2014