Article

Evidence for Shared Genetic Risk Between Methamphetamine-Induced Psychosis and Schizophrenia

Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 04/2013; 38(10). DOI: 10.1038/npp.2013.94
Source: PubMed

ABSTRACT Methamphetamine (METH) use can provoke psychotic reactions requiring immediate treatment, namely METH-induced psychosis. Although the distinction between METH-induced and primary psychosis is important for understanding their clinical courses, we do not have clear diagnostic procedure by their symptoms. Not only are there similarities between the clinical features of METH-induced psychosis and schizophrenia (SCZ), but there is also epidemiological evidence of a shared genetic risk between 'METH-related' disorders and SCZ, which makes the differentiation of these two conditions difficult. In this study, we conducted a genome-wide association study (GWAS) targeting METH-dependent patients. The METH sample group, used in the METH-dependence GWAS, included 236 METH-dependent patients and 864 healthy controls. We also included a 'within-case' comparison between 194 METH-induced psychosis patients and 42 METH-dependent patients without psychosis in a METH-induced psychosis GWAS. To investigate the shared genetic components between METH dependence, METH-induced psychosis, and SCZ, data from our previous SCZ GWAS (total N=1108) were re-analyzed. In the SNP-based analysis, none of the SNPs showed genome-wide significance in either data set. By performing a polygenic component analysis, however, we found that a large number of 'risk' alleles for METH-induced psychosis are over-represented in individuals with SCZ (P best =0.0090). Conversely, we did not detect enrichment either between METH dependence and METH-induced psychosis or between METH dependence and SCZ. The results support previous epidemiological and neurobiological evidence for a relationship between METH-induced psychosis and SCZ. These also suggest that the overlap between genes scored as positive in these data sets can have higher probability as susceptibility genes for psychosis.

Download full-text

Full-text

Available from: Tsukasa Sasaki, Sep 10, 2014
0 Followers
 · 
123 Views
 · 
22 Downloads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously identified the neuronal PAS3 (NPAS3) gene as a candidate gene for schizophrenia. A mother and daughter, both with schizophrenia, were carriers of a translocation, t(9;14)(q34;q13), that disrupts the NPAS3 gene. The gene is located at 14q13, a region implicated in schizophrenia and bipolar disorder in various linkage studies. NPAS3 belongs to the basic helix-loop-helix Per-Arnt-Sim (bHLH-PAS) transcription factor family, involved in diverse processes including the regulation of cell differentiation and circadian rhythms, and the development and function of the nervous system. The 12 exons encoding NPAS3 were sequenced in DNA from individuals with schizophrenia. NPAS3 variants were identified in exons 6 and 12, initially in 12 patients only. These two exons were then sequenced in 83 patients and 83 controls. Three common variants of NPAS3, also found in controls, showed a positive association with schizophrenia (NM_001164749: rs12434716, c.1654G>C, p=0.009; rs10141940, c.2208C>T, p=0.01; rs10142034, c.2262C>G, p=0.01). The c.1654G>C variant, results in an p.Ala552Pro change and may affect NPAS3 protein function directly. Alternatively, the three SNPs may affect the splicing of NPAS3 transcripts, as they are each located within putative exonic splicing enhancer (ESE) motifs (ESEFinder). A c.726C>T variant, identified in three patients, is located in an ESE element and is predicted to reduce the function of the motif. Other variants, identified in controls, included c.2089G>A (p.Gly697Ser) and c.2097T>C. Our identification of potentially defective NPAS3 variants supports recent studies that implicate perturbations in NPAS3 pathways in impaired neurogenesis and psychosis.
    Schizophrenia Research 05/2010; 120(1-3):143-9. DOI:10.1016/j.schres.2010.04.002 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although genome-wide association (GWA) studies for common variants have thus far succeeded in explaining only a modest fraction of the genetic components of human common diseases, recent advances in next-generation sequencing technologies could rapidly facilitate substantial progress. This outcome is expected if much of the missing genetic control is due to gene variants that are too rare to be picked up by GWA studies and have relatively large effects on risk. Here, we evaluate the evidence for an important role of rare gene variants of major effect in common diseases and outline discovery strategies for their identification.
    Nature Reviews Genetics 06/2010; 11(6):415-25. DOI:10.1038/nrg2779 · 39.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Family and twin studies indicate substantial overlap of genetic influences on psychotic and mood disorders. Linkage and candidate gene studies have also suggested overlap across schizophrenia, bipolar disorder, and major depressive disorder. The purpose of this study was to apply genomewide association study (GWAS) analysis to address the specificity of genetic effects on these disorders. The authors combined GWAS data from three large effectiveness studies of schizophrenia (CATIE, genotyped: N=741), bipolar disorder (STEP-BD, geno-typed: N=1,575), and major depressive disorder (STAR*D, genotyped: N=1,938) as well as from psychiatrically screened control subjects (NIMH-Genetics Repository: N=1,204). A two-stage analytic procedure involving an omnibus test of allele frequency differences among case and control groups was applied, followed by a model selection step to identify the best-fitting model of allelic effects across disorders. The strongest result was seen for a single nucleotide polymorphism near the adrenomedullin (ADM) gene (rs6484218), with the best-fitting model indicating that the effect was specific to bipolar II disorder. Findings also revealed evidence suggesting that several genes may have effects that transcend clinical diagnostic boundaries, including variants in NPAS3 that showed pleiotropic effects across schizophrenia, bipolar disorder, and major depressive disorder. This study provides the first genomewide significant evidence implicating variants near the ADM gene on chromosome 11p15 in psychopathology, with effects that appear to be specific to bipolar II disorder. Although genomewide significant evidence of cross-disorder effects was not detected, the results provide evidence that there are both pleiotropic and disorder-specific effects on major mental illness and illustrate an approach to dissecting the genetic basis of mood and psychotic disorders that can inform future large-scale cross-disorder GWAS analyses.
    American Journal of Psychiatry 10/2010; 167(10):1254-63. DOI:10.1176/appi.ajp.2010.09091335 · 13.56 Impact Factor
Show more