Evidence for Shared Genetic Risk Between Methamphetamine-Induced Psychosis and Schizophrenia

Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.05). 04/2013; 38(10). DOI: 10.1038/npp.2013.94
Source: PubMed


Methamphetamine (METH) use can provoke psychotic reactions requiring immediate treatment, namely METH-induced psychosis. Although the distinction between METH-induced and primary psychosis is important for understanding their clinical courses, we do not have clear diagnostic procedure by their symptoms. Not only are there similarities between the clinical features of METH-induced psychosis and schizophrenia (SCZ), but there is also epidemiological evidence of a shared genetic risk between 'METH-related' disorders and SCZ, which makes the differentiation of these two conditions difficult. In this study, we conducted a genome-wide association study (GWAS) targeting METH-dependent patients. The METH sample group, used in the METH-dependence GWAS, included 236 METH-dependent patients and 864 healthy controls. We also included a 'within-case' comparison between 194 METH-induced psychosis patients and 42 METH-dependent patients without psychosis in a METH-induced psychosis GWAS. To investigate the shared genetic components between METH dependence, METH-induced psychosis, and SCZ, data from our previous SCZ GWAS (total N=1108) were re-analyzed. In the SNP-based analysis, none of the SNPs showed genome-wide significance in either data set. By performing a polygenic component analysis, however, we found that a large number of 'risk' alleles for METH-induced psychosis are over-represented in individuals with SCZ (P best =0.0090). Conversely, we did not detect enrichment either between METH dependence and METH-induced psychosis or between METH dependence and SCZ. The results support previous epidemiological and neurobiological evidence for a relationship between METH-induced psychosis and SCZ. These also suggest that the overlap between genes scored as positive in these data sets can have higher probability as susceptibility genes for psychosis.

Download full-text


Available from: Tsukasa Sasaki, Sep 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains). Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 03/2015; 1(1):1. DOI:10.1016/j.neubiorev.2015.03.007 · 8.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Administration of amphetamine and methamphetamine can elicit psychiatric adverse effects at acute administration, binge use, withdrawal, and chronic use. Most troublesome of these are psychotic states and aggressive behavior, but a large variety of undesirable changes in cognition and affect can be induced. Adverse effects occur more frequently with higher dosages and long-term use. They can subside over time but some persist long-term. Multiple alterations in the gray and white matter of the brain assessed as changes in tissue volume or metabolism, or at molecular level, have been associated with amphetamine and methamphetamine use and the psychiatric adverse effects, but further studies are required to clarify their causal role, specificity, and relationship with preceding states and traits and comorbidities. The latter include other substance use disorders, mood and anxiety disorders, attention deficit hyperactivity disorder, and antisocial personality disorder. Amphetamine- and methamphetamine-related psychosis is similar to schizophrenia in terms of symptomatology and pathogenesis, and these two disorders share predisposing genetic factors. © 2015 Elsevier Inc. All rights reserved.
    International Review of Neurobiology 12/2015; 120:179-204. DOI:10.1016/bs.irn.2015.02.004 · 1.92 Impact Factor