Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks.

Biology, Brookhaven National Laboratory, Upton, New York, United States of America.
PLoS Computational Biology (Impact Factor: 4.83). 04/2013; 9(4):e1003023. DOI: 10.1371/journal.pcbi.1003023
Source: PubMed

ABSTRACT In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for [Formula: see text] of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space which correspond to less stable proteins. In the interaction network of baker's yeast, we find that statistically proteins that receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have shown that Borrelia burgdorferi gene product BB0323 is essential for cell fission and pathogen persistence in vivo. Here we describe characterization of a conserved hypothetical protein annotated as BB0238, which specifically interacts with the N-terminal region of BB0323. We show that BB0238 is a subsurface protein, and similar to BB0323, exists in the periplasm and as a membrane-bound protein. Deletion of bb0238 in infectious B. burgdorferi did not affect microbial growth in vitro or survival in ticks, but the mutant was unable to persist in mice or transmit from ticks - defects that are restored upon genetic complementation. Remarkably, BB0238 and BB0323 contribute to mutual post-translational stability, as deletion of one causes dramatic reduction in the protein level of the other partner. Interference with the function of BB0238 or BB0323 and their interaction may provide novel strategies to combat B. burgdorferi infection.
    The Journal of Infectious Diseases 08/2014; 211(3). DOI:10.1093/infdis/jiu460 · 5.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Binding interactions between proteins and other molecules mediate numerous cellular processes, including metabolism, signaling, and regulation of gene expression. These interactions evolve in response to changes in the protein's chemical or physical environment (such as the addition of an antibiotic), or when genes duplicate and diverge. Several recent studies have shown the importance of folding stability in constraining protein evolution. Here we investigate how structural coupling between protein folding and binding -- the fact that most proteins can only bind their targets when folded -- gives rise to evolutionary coupling between the traits of folding stability and binding strength. Using biophysical and evolutionary modeling, we show how these protein traits can emerge as evolutionary "spandrels" even if they do not confer an intrinsic fitness advantage. In particular, proteins can evolve strong binding interactions that have no functional role but merely serve to stabilize the protein if misfolding is deleterious. Furthermore, such proteins may have divergent fates, evolving to bind or not bind their targets depending on random mutation events. These observations may explain the abundance of apparently nonfunctional interactions among proteins observed in high-throughput assays. In contrast, for proteins with both functional binding and deleterious misfolding, evolution may be highly predictable at the level of biophysical traits: adaptive paths are tightly constrained to first gain extra folding stability and then partially lose it as the new binding function is developed. These findings have important consequences for our understanding of fundamental evolutionary principles of both natural and engineered proteins.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.
    PLoS Computational Biology 06/2014; 10(6):e1003674. DOI:10.1371/journal.pcbi.1003674 · 4.83 Impact Factor


Available from
May 31, 2014

Purushottam Dixit