Hepatitis C Virus Core Protein Down-Regulates p21Waf1/Cip1 and Inhibits Curcumin-Induced Apoptosis through MicroRNA-345 Targeting in Human Hepatoma Cells

Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.
PLoS ONE (Impact Factor: 3.23). 04/2013; 8(4):e61089. DOI: 10.1371/journal.pone.0061089
Source: PubMed


Hepatitis C virus (HCV) has been reported to regulate cellular microRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma, but HCV core-modulated cellular microRNAs are unknown. The HCV core protein regulates p21(Waf1/Cip1) expression. However, the mechanism of HCV core-associated p21(Waf1/Cip1) regulation remains to be further clarified. Therefore, we attempted to determine whether HCV core-modulated cellular microRNAs play an important role in regulating p21(Waf1/Cip1) expression in human hepatoma cells.
Cellular microRNA profiling was investigated in core-overexpressing hepatoma cells using TaqMan low density array. Array data were further confirmed by TaqMan real-time qPCR for single microRNA in core-overexpressing and full-length HCV replicon-expressing cells. The target gene of microRNA was examined by reporter assay. The gene expression was determined by real-time qPCR and Western blotting. Apoptosis was examined by annexin V-FITC apoptosis assay. Cell cycle analysis was performed by propidium iodide staining. Cell proliferation was analyzed by MTT assay.
HCV core protein up- or down-regulated some cellular microRNAs in Huh7 cells. HCV core-induced microRNA-345 suppressed p21(Waf1/Cip1) gene expression through targeting its 3' untranslated region in human hepatoma cells. Moreover, the core protein inhibited curcumin-induced apoptosis through p21(Waf1/Cip1)-targeting microRNA-345 in Huh7 cells.
HCV core protein enhances the expression of microRNA-345 which then down-regulates p21(Waf1/Cip1) expression. It is the first time that HCV core protein has ever been shown to suppress p21(Waf1/Cip1) gene expression through miR-345 targeting.

Download full-text


Available from: Yu lueng Shih, Oct 13, 2015
40 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.
    Cancers 03/2014; 6(1):79-111. DOI:10.3390/cancers6010079
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of bone marrow microenvironment on the cell cycle of acute lymphocytic leukemia (ALL) and the underlying mechanism has not been elucidated. In this study, we found that in normal condition, bone marrow mesenchymal stromal cells (BM-MSCs) had no significant effect on the cell cycle and apoptosis of ALL; in the condition when the cell cycle of ALL was blocked by genotoxic agents, BM-MSCs could increase the S-phase cell ratio and decrease the G2/M phase ratio of ALL. Besides, BM-MSCs could protect ALL cells from drug-induced apoptosis. Then, we proved that BM-MSCs affect the cell cycle arrest effect of genotoxic agents on ALL cells via p21 down-regulation. Moreover, our results indicated that activation of Wnt/β-catenin and Erk pathways might be involved in the BM-MSC-induced down-regulation of p21 in ALL cells. Targeting microenvironment-related signaling pathway may therefore be a potential novel approach for ALL therapy.
    Annals of Hematology 04/2014; 93(9). DOI:10.1007/s00277-014-2069-1 · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well-established that the host microRNA (miRNA) milieu has a significant influence on the etiology of disease. In the context of viruses, such as hepatitis C virus (HCV), microRNAs have been shown to influence viral life cycles both directly, through interactions with the viral genome, and indirectly, through regulation of critical virus-associated host pathways. Several miRNA profiling studies have demonstrated that HCV infection aberrantly regulates a significant number of human miRNA. However, the biological relevance of these modulations remains poorly understood. In this review, we summarize recent research that has shed light on the pro-viral and anti-viral roles of HCV-induced changes in human miRNA expression and their significance in the development of HCV related sequelae and response to therapy.
    04/2014; 7C(1):1-10. DOI:10.1016/j.coviro.2014.03.004
Show more