Article

Switchable focus using a polymeric lenticular microlens array and a polarization rotator

Optics Express (Impact Factor: 3.53). 04/2013; 21(7):7916-25. DOI: 10.1364/OE.21.007916
Source: PubMed

ABSTRACT We demonstrate a flat polymeric lenticular microlens array using a mixture of rod-like diacrylate monomer and positive dielectric anisotropy nematic liquid crystal (LC). To create gradient refractive index profile in one microlens, we generate fringing fields from a planar top electrode and two striped bottom electrodes. After UV stabilization, the film is optically anisotropic and can stand alone. We then laminate this film on a 90° twisted-nematic LC cell, which works as a dynamic polarization rotator. The static polymeric lenticular lens exhibits focusing effect only to the extraordinary ray, but no optical effect to the ordinary ray. Such an integrated lens system offers several advantages, such as low voltage, fast response time, and temperature insensitivity, and can be used for switchable 2D/3D displays.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A liquid crystal lens array with a hexagonal arrangement is investigated experimentally. The uniqueness of this study exists in the fact that using convex-ring electrode provides a smooth and controllable applied potential profile across the aperture to manage the phase profile. We observed considerable differences between flat electrode and convex-ring electrode; in particular the lens focal length is variable in a wider range from 2.5cm to infinity. This study presents several noteworthy characteristics such as low driving voltage; 30 μm cell gap and the lens is electrically switchable between 2D/3D modes. We demonstrate a hexagonal LC-lens array for capturing 3D images by using single sensor using integral imaging.
    Optics Express 01/2015; 23(2):971-981. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An electrically tunable depth-of-field (DOF) endoscope using a liquid crystal lens (LC lens) as an active focusing element is demonstrated. The optical mechanism of the electrically-tunable DOF endoscope adopting a two-mode switching LC lens is introduced. The two-mode switching LC lens provides not only a positive lens power but also a negative lens power. Therefore, we could extend the range of DOF originally from 27 mm ~ 55 mm to 12.4 mm ~ 76.4 mm by using the two-mode switching LC lens as an active focusing element. The detail derivations of the optical mechanism of the endoscopic system adopting a LC lens are invistgated. The more detail experimental results are demonstrated. We believe this study can provide a more detail understanding of an endoscopic system adopting a tunable focusing lens.
    SPIE Organic Photonics + Electronics; 09/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrically tunable liquid crystal microlenses have attracted strong research attention due to their advantages of tunable focusing, voltage actuation, low power consumption, simple fabrication, compact structure, and good stability. They are expected to be essential optical devices with widespread applications. However, the slow response time of nematic liquid crystal (LC) microlenses has been a significant technical barrier to practical applications and commercialization. LC/polymer composites, consisting of LC and monomer, are an important extension of pure LC systems, which offer more flexibility and much richer functionality than LC alone. Due to the anchoring effect of a polymer network, microlenses, based on LC/polymer composites, have relatively fast response time in comparison with pure nematic LC microlenses. In addition, polymer-stabilized blue phase liquid crystal (PS-BPLC) based on Kerr effect is emerging as a promising candidate for new photonics application. The major attractions of PS-BPLC are submillisecond response time and no need for surface alignment layer. In this paper, we review two types of fast-response microlenses based on LC/polymer composites: polymer dispersed/stabilized nematic LC and polymer-stabilized blue phase LC. Their basic operating principles are introduced and recent progress is reviewed by examples from recent literature. Finally, the major challenges and future perspectives are discussed.
    Micromachines 06/2014; 5(2):300-324. DOI:10.3390/mi5020300 · 1.29 Impact Factor

Full-text

Download
10 Downloads
Available from
Oct 13, 2014