New approaches to molecular diagnosis.

Department of Genetics, University of Alabama at Birmingham, 1720 Second Ave S, Kaul 230, Birmingham, AL 35294, USA.
JAMA The Journal of the American Medical Association (Impact Factor: 29.98). 04/2013; 309(14):1511-21. DOI: 10.1001/jama.2013.3239
Source: PubMed

ABSTRACT Advances in understanding the molecular basis of rare and common disorders, as well as in the technology of DNA analysis, are rapidly changing the landscape of molecular genetic and genomic testing. High-resolution molecular cytogenetic analysis can now detect deletions or duplications of DNA of a few hundred thousand nucleotides, well below the resolution of the light microscope. Diagnostic testing for "single-gene" disorders can be done by targeted analysis for specific mutations, by sequencing a specific gene to scan for mutations, or by analyzing multiple genes in which mutation may lead to a similar phenotype. The advent of massively parallel next-generation sequencing facilitates the analysis of multiple genes and now is being used to sequence the coding regions of the genome (the exome) for clinical testing. Exome sequencing requires bioinformatic analysis of the thousands of variants that are identified to find one that is contributing to the pathology; there is also a possibility of incidental identification of other medically significant variants, which may complicate genetic counseling. DNA testing can also be used to identify variants that influence drug metabolism or interaction of a drug with its cellular target, allowing customization of choice of drug and dosage. Exome and genome sequencing are being applied to identify specific gene changes in cancer cells to guide therapy, to identify inherited cancer risk, and to estimate prognosis. Genomic testing may be used to identify risk factors for common disorders, although the clinical utility of such testing is unclear. Genetic and genomic tests may raise new ethical, legal, and social issues, some of which may be addressed by existing genetic nondiscrimination legislation, but which also must be addressed in the course of genetic counseling. The purpose of this article is to assist physicians in recognizing where new approaches to genetic and genomic testing may be applied clinically and in being aware of the principles of interpretation of test results.

  • [Show abstract] [Hide abstract]
    ABSTRACT: As science advances, new competencies must be integrated into nursing practice to ensure the provision of safe, responsible, and accountable care. This article utilizes a model for integrating a new complex competency into nursing practice, using genomics as the exemplar competency. Nurses working at 23 Magnet® Recognition Program hospitals participated in a 1-year new competency integration effort.The aim of the study was to evaluate nursing workforce attitudes, receptivity, confidence, competency, knowledge, and practices regarding genomics. Results were analyzed using descriptive statistical techniques. Respondents were 7,798 licensed registered nurses. The majority (89%) said it was very or somewhat important for nurses to become more educated in the genetics of common diseases. Overall, the respondents felt genomics was important, but a genomic nursing competency deficit affecting all nurses regardless of academic preparation or role was observed. The study findings provide essential information to help guide the integration of a new competency into nursing practice.
    Journal of nursing regulation. 04/2014; 5(1):40-47.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical evaluation of CNVs identified via techniques such as array comparative genome hybridisation (aCGH) involves the inspection of lists of known and unknown duplications and deletions with the goal of distinguishing pathogenic from benign CNVs. A key step in this process is the comparison of the individual's phenotypic abnormalities with those associated with Mendelian disorders of the genes affected by the CNV. However, because often there is not much known about these human genes, an additional source of data that could be used is model organism phenotype data. Currently, almost 6000 genes in mouse and zebrafish are, when knocked out, associated with a phenotype in the model organism, but no disease is known to be caused by mutations in the human ortholog. Yet, searching model organism databases and comparing model organism phenotypes with patient phenotypes for identifying novel disease genes and medical evaluation of CNVs is hindered by the difficulty in integrating phenotype information across species and the lack of appropriate software tools.
    Journal of Medical Genetics 10/2014; · 5.64 Impact Factor
  • Stem Cells and Development 12/2013; 22(S1):4-7. · 4.20 Impact Factor


Available from
Jul 9, 2014