Titanium dioxide nanoparticles: a review of current toxicological data.

Particle and Fibre Toxicology (Impact Factor: 6.99). 04/2013; 10(1):15. DOI: 10.1186/1743-8977-10-15
Source: PubMed

ABSTRACT Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The morphology, thermal stability and thermal degradation kinetics of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) blends filled with small amounts of titanium(IV)oxide (TiO2) nanoparticles were investigated. The nanoparticles were mostly well dispersed in both phases of the PHBV/PCL blend, which showed a co-continuous morphology at a 50/50 w/w ratio, but some large agglomerates were also observed. The equal dispersion of the TiO2 nanoparticles in both polymers was attributed to the polymers having the same surface properties, polarities and viscosities. The thermal stability of PHBV was improved when blended with the more thermally stable PCL, but the PCL became less thermally stable when blended with PHBV. The introduction of only 1 wt% of TiO2 nanoparticles seems to have observably improved the thermal stabilities of both polymers in the blend, but the nanoparticles probably retarded the evolution of the degradation products through their interaction with these products. Further improvement in thermal stability at higher nanoparticle contents was insignificant because of the nanoparticles’ agglomeration which reduced their effectiveness. Changes in the activation energies of degradation, determined through the Flynn–Wall–Ozawa model from thermogravimetric analysis mass loss data, and differences between the Fourier-transform infrared spectra of the degradation volatiles obtained during the degradation process, to a large extent support the other observations.
    Journal of Materials Science 05/2015; 50(10). DOI:10.1007/s10853-015-8950-z · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The increasing use of nanotechnology in our daily life can have many unintended effects and pose adverse impact on human health, environment and ecosystems. Wider application of engineered nanoparticles, especially TiO2 nanoparticles (TiO2 NP) necessitates the understanding of toxicity and mechanism of action. Metabolomics provides a unique opportunity to find out biomarkers of nanoparticles exposure, which leads to the identification of cellular pathways and their biological mechanisms. Gas chromatography mass spectrometry (GC-MS)-based metabolomics approach was used in the present study to understand the toxicity of sub-lethal concentrations (7.7 and 38.5 µg/ml) of TiO2 NP (<25 nm) in well-known, soil nematode Caenorhabditis elegans (C. elegans). Multivariate pattern recognition analysis reflected the perturbations in the metabolism (amino acids, organic acids, sugars) of C. elegans on exposure to TiO2 NP. The biological pathways affected due to the exposure of TiO2 NP were identified, among them mainly affected pathways are tricarboxylic acid (TCA) cycle, arachidonic acid metabolism and glyoxalate dicarobxylate metabolism. The manifestation of differential metabolic profile in organism exposed to TiO2 (NP or bulk particle) was witnessed as an effect on reproduction. The present study demonstrates that metabolomics can be employed as a tool to understand the potential toxicity of nanoparticles in terms of organism-environment interactions as well as in assessing the organism function at the molecular level.
    Nanotoxicology 02/2015; DOI:10.3109/17435390.2014.993345 · 7.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR) modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems.
    International Journal of Environmental Research and Public Health 02/2015; 12(2):1112-1134. DOI:10.3390/ijerph120201112 · 1.99 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014