Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure.

Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
Cytokine (Impact Factor: 2.87). 04/2013;
Source: PubMed

ABSTRACT This study aimed to determine the role of granulocyte colony-stimulating factor (G-CSF), induced by a promising radiation countermeasure, gamma tocotrienol (GT3), in protecting mice from lethal doses of ionizing radiation. CD2F1 mice were injected with an optimal dose of GT3 and a G-CSF antibody, and their 30-d survival was monitored. An appropriate antibody isotype was used as a control. Multiplex Luminex was used to analyze GT3-induced cytokines. G-CSF neutralization by exogenous administration of a G-CSF antibody was confirmed by analyzing serum cytokine levels. Our results demonstrate that GT3 significantly protected mice against ionizing radiation, and induced high levels of G-CSF in peripheral blood 24h after administration. Injection of a G-CSF neutralizing antibody to the GT3-treated mice resulted in complete neutralization of G-CSF and abrogation of its protective efficacy. Administration of a G-CSF antibody did not affect levels of other cytokines induced by GT3. Histopathology of bone marrow from GT3-treated and -irradiated mice demonstrated protection of the hematopoietic tissue, and also that such protection was abrogated by administering a G-CSF antibody. Our results suggest that induction of high levels of G-CSF by GT3 administration is responsible for its protective efficacy against radiation injury.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tocols induce high levels of granulocyte-colony-stimulating factor (G-CSF). G-CSF mobilises progenitors that allow mice that have been severely immunocompromised by exposure to acute, high-dose ionising irradiation to recover and to survive. The neutralisation of G-CSF abrogates the radioprotective efficacy of tocols. This article reviews studies in which CD2F1 mice were irradiated with sufficiently high doses to cause acute radiation syndrome symptoms and then administered (iv) progenitor-enriched whole blood or peripheral blood mononuclear cells from tocol- and AMD3100-injected donor mice (AMD3100 is a chemokine receptor antagonist used to improve the yield of mobilised progenitors). In some experiments, G-CSF was neutralised completely. Irradiated recipient mice were observed for 30 d post-irradiation for survival, a primary endpoint used for determining therapeutic effectiveness. Additionally, potential tocol-induced biomarkers (cytokines, chemokines and growth factors) were quantified. The authors suggest that tocols are highly effective agents for mobilising progenitors with significant therapeutic potential.
    Radiation Protection Dosimetry 07/2014; · 0.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development.
    Frontiers in Oncology 01/2014; 4:381.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to elucidate the role of gamma-tocotrienol (GT3)-mobilized progenitors in mitigating damage to mice exposed to a supralethal dose of cobalt-60 gamma-radiation. CD2F1 mice were transfused 24 h post-irradiation with whole blood or isolated peripheral blood mononuclear cells (PBMC) from donors that had received GT3 72 h prior to blood collection and recipient mice were monitored for 30 days. To understand the role of GT3-induced granulocyte colony-stimulating factor (G-CSF) in mobilizing progenitors, donor mice were administered a neutralizing antibody specific to G-CSF or its isotype before blood collection. Bacterial translocation from gut to heart, spleen and liver of irradiated recipient mice was evaluated by bacterial culture on enriched and selective agar media. Endotoxin in serum samples also was measured. We also analyzed the colony-forming units in the spleens of irradiated mice. Our results demonstrate that whole blood or PBMC from GT3-administered mice mitigated radiation injury when administered 24 h post-irradiation. Furthermore, administration of a G-CSF antibody to GT3-injected mice abrogated the efficacy of blood or PBMC obtained from such donors. Additionally, GT3-mobilized PBMC inhibited the translocation of intestinal bacteria to the heart, spleen, and liver, and increased colony forming unit-spleen (CFU-S) numbers in irradiated mice. Our data suggests that GT3 induces G-CSF, which mobilizes progenitors and these progenitors mitigate radiation injury in recipient mice. This approach using mobilized progenitor cells from GT3-injected donors could be a potential treatment for humans exposed to high doses of radiation.
    PLoS ONE 11/2014; 9(11). · 3.53 Impact Factor

Shilpa S Kulkarni