Safety and efficacy of subcutaneous formulation of bortezomib versus the conventional intravenous formulation in multiple myeloma.

Therapeutic advances in hematology 04/2012; 3(2):117-24. DOI: 10.1177/2040620711432020
Source: PubMed

ABSTRACT The discovery of the ubiquitin-proteasome pathway first, and the proteasome inhibitors thereafter were not made in the hope of improving the treatment of malignant diseases. However, bortezomib, the first in class proteasome inhibitor introduced in the clinical practice has contributed to improve the outcome of patients with multiple myeloma, at relapse or disease progression as well as upfront. The results observed in a large randomized trial (APEX) comparing bortezomib and high-dose dexamethasone demonstrated a significant benefit for bortezomib in terms of response rate, progression-free and overall survival. These results led to bortezomib being approved for use in relapsed and/or refractory myeloma patients. Subsequent studies demonstrated that its activity could be enhanced in combination with other drugs; and the next step was to move to the newly diagnosed patient population; in fact, bortezomib-melphalan-prednisone (VMP) is approved as a standard of care for newly diagnosed elderly patients. However, toxicity, especially peripheral neuropathy, as well as the intravenous route required for its administration are the two most significant bortezomib-related issues. To try to reduce the peripheral neuropathy, new guidelines for its management and the introduction of weekly schedules of administration have contributed to significantly decrease its incidence and the subcutaneous administration has been recently introduce to avoid the intravenous (IV) route. Results obtained in phase I/II and III studies have confirmed that subcutaneous administration is feasible and represents an additional step towards the optimization of bortezomib use, resulting in a probably more convenient method than the IV route that is at least as effective.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: CEP-18770 is an unstable peptide boronic acid and an amorphous solid, making it a challenging synthetic target. Process R&D led to a new process that avoided chromatography through crystalline intermediates, increased atom and volume efficiency, provided a chromophore, and gave higher yields and purity. A stable, crystalline diethanolamine adduct was discovered that has the potential to be used as a prodrug.
    Organic Process Research & Development 02/2013; 17(3):422–426. DOI:10.1021/op400010u · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
    Blood reviews 10/2013; 27(6). DOI:10.1016/j.blre.2013.10.002 · 5.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bortezomib (BTZ) is the first proteasome inhibitor entered in clinical practice. Peripheral neuropathy is likely to be a class side effect of these drugs, although its severity is largely variable, and it deserves to be further investigated, since the mechanisms of BTZ-induced peripheral neurotoxicity (BiPN) are still unknown. In our study, we investigated in vivo and in vitro possible pathogenic events relevant to BiPN using a well-established rat model, with particular reference to the extent of proteasome inhibition and the effects on α-tubulin polymerization in sciatic nerves and dorsal root ganglia specimens obtained from animals treated with chronic regimens at a dose of 0.2 mg/kg intravenously. The same assessments were also performed after a single injection. Moreover, these studies were replicated in vitro using embryonic DRG neurons exposed to 100 nM BTZ and adult DRG neurons exposed to 10-50 nM BTZ for 24 h and 48 h. A significant increase in the polymerized fraction of a-tubulin and prolonged proteasome inhibition were observed after the chronic BTZ treatment in vivo. Recovery to physiological levels was observed after a 4-week follow-up post-treatment period. Proteasome inhibition and increased a-tubulin polymerization were also observed following BTZ treatment of both embryonic and adult DRG neurons in vitro. Our in vivo results suggest that proteasome inhibition and alteration of tubulin dynamics contribute to BiPN. The in vitro systems here described reliably replicate the in vivo results, and might therefore be used for further mechanistic studies on the effects of proteasome inhibitors on neurons.
    Cell cycle (Georgetown, Tex.) 12/2013; 13(4). DOI:10.4161/cc.27476 · 5.01 Impact Factor


Available from