In Vivo c-Met Pathway Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like Cells 1 2

Department of Neurology, The Hugo W. Moser Research Institute at Kennedy Krieger Inc and The Johns Hopkins University School of Medicine, Baltimore, MD.
Translational oncology (Impact Factor: 2.88). 04/2013; 6(2):104-11. DOI: 10.1593/tlo.13127
Source: PubMed


Solid malignancies contain sphere-forming stem-like cells that are particularly efficient in propagating tumors. Identifying agents that target these cells will advance the development of more effective therapies. Recent converging evidence shows that c-Met expression marks tumor-initiating stem-like cells and that c-Met signaling drives human glioblastoma multiforme (GBM) cell stemness in vitro. However, the degree to which tumor-propagating stem-like cells depend on c-Met signaling in histologically complex cancers remains unknown. We examined the effects of in vivo c-Met pathway inhibitor therapy on tumor-propagating stem-like cells in human GBM xenografts. Animals bearing pre-established tumor xenografts expressing activated c-Met were treated with either neutralizing anti- hepatocyte growth factor (HGF) monoclonal antibody L2G7 or with the c-Met kinase inhibitor PF2341066 (Crizotinib). c-Met pathway inhibition inhibited tumor growth, depleted tumors of sphere-forming cells, and inhibited tumor expression of stem cell markers CD133, Sox2, Nanog, and Musashi. Withdrawing c-Met pathway inhibitor therapy resulted in a substantial rebound in stem cell marker expression concurrent with tumor recurrence. Cells derived from xenografts treated with anti-HGF in vivo were depleted of tumor-propagating potential as determined by in vivo serial dilution tumor-propagating assay. Furthermore, daughter xenografts that did form were 12-fold smaller than controls. These findings show that stem-like tumor-initiating cells are dynamically regulated by c-Met signaling in vivo and that c-Met pathway inhibitors can deplete tumors of their tumor-propagating stem-like cells.

24 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Met receptor tyrosine kinase (RTK) is an attractive oncology therapeutic target. Met and its ligand, HGF, play a central role in signaling pathways that are exploited during the oncogenic process, including regulation of cell proliferation, invasion, angiogenesis, and cancer stem cell regulation. Elevated Met and HGF as well as numerous Met genetic alterations have been reported in human cancers and correlate with poor outcome. Alterations of pathways that regulate Met, such as the ubiquitin ligase c-Cbl are also likely to activate Met in the oncogenic setting. Moreover, interactive crosstalk between Met and other receptors such as EGFR, HER2 and VEGFR, underlies a key role for Met in resistance to other RTK-targeted therapies. A large body of preclinical and clinical data exists that supports the use of either antibodies or small molecule inhibitors that target Met or HGF as oncology therapeutics. The prognostic potential of Met expression has been suggested from studies in numerous cancers including lung, renal, liver, head and neck, stomach, and breast. Clinical trials using Met inhibitors indicate that the level of Met expression is a determinant of trial outcome, a finding that is actively under investigation in multiple clinical scenarios. Research in Met prognostics and predictors of drug response is now shifting toward more sophisticated methodologies suitable for development as validated and effective biomarkers that can be partnered with therapeutics to improve patient survival.
    Pharmacology [?] Therapeutics 11/2013; 142(3). DOI:10.1016/j.pharmthera.2013.12.014 · 9.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Production of chimeric mice is a useful tool for the elucidation of gene function. After successful isolation of embryonic stem (ES) cell lines, there are many methods for producing chimeras, including co-culture with the embryos, microinjection of the ES cells into pre-implantation embryos, and use of tetraploid embryos to generate the full ES-derived transgenic mice. Here, we aimed to generate the transgenic ES cell line, compare the production efficiency of chimeric mice and its proportion to yield the male chimeric mice by microinjected ES cells into 4- to 8-cell and blastocysts embryos with the application of Piezo-Micromanipulator (PMM), and trace the fate of the injected ES cells. Results We successfully generated a transgenic ES cell line and proved that this cell line still maintained pluripotency. Although we achieved a satisfactory chimeric mice rate, there was no significant difference in the production of chimeric mice using the two different methods, but the proportion of the male chimeric mice in the 4- to 8-cell group was higher than in the blastocyst group. We also found that there was no tendency for ES cells to aggregate into the inner cell mass using in vitro culture of the chimeric embryos, indicating that they aggregated randomly. Conclusions These results showed that the PMM method is a convenient way to generate chimeric mice and microinjection of ES cells into 4- to 8-cell embryos can increase the chance of yielding male chimeras compared to the blastocyst injection. These results provide useful data in transgenic research mediated by ES cells.
    Journal of Animal Science and Biotechnology 03/2013; 4(1):12. DOI:10.1186/2049-1891-4-12 · 1.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Metastasis-associated in colon cancer 1 (MACC1) has been established as an independent prognostic indicator of metastasis formation and metastasis-free survival for patients with colon cancer and other solid tumors. However, no data are available concerning MACC1 expression in human astrocytic tumors. Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor of adulthood, and due to its invasive and rapid growth, patients have unfavorable prognoses. Although these tumors rarely metastasize, their invasive and migratory behavior is similar to those of metastatic cells of tumors of different origin. Thus, we hypothesized that MACC1 may be involved in progression of human gliomas.Methods We performed real-time measurements of proliferation and migration in MACC1-transfected GBM cell lines (U138, U251) and evaluated tumor formation in organotypic hippocampal slice cultures of mice. Semiquantitative and quantitative real-time reverse transcription PCR analyses were performed for MACC1 and for its transcriptional target c-Met in human astrocytoma of World Health Organization grade II (low-grade astrocytoma) and GBM biopsies. Data were validated by MACC1 immunohistochemistry in independent matched samples of low-grade astrocytoma and GBM.ResultsMACC1 increases the proliferative, migratory, and tumor-formation abilities of GBM cells. The c-Met inhibitor crizotinib reduced MACC1-induced migration and tumor formation in organotypic hippocampal slice cultures of mice. Analyzing patients' biopsies, MACC1 expression increased concomitantly with increasing World Health Organization grade. Moreover, MACC1 expression levels allowed discrimination of dormant and recurrent low-grade astrocytomas and of primary and secondary GBM. Strong MACC1 expression correlated with reduced patient survival.ConclusionsMACC1 may represent a promising biomarker for prognostication and a new target for treatment of human gliomas.
    Neuro-Oncology 11/2013; 15(12). DOI:10.1093/neuonc/not136 · 5.56 Impact Factor
Show more

Preview (2 Sources)

24 Reads
Available from