Article

The Golgin Tether Giantin Regulates the Secretory Pathway by Controlling Stack Organization within Golgi Apparatus.

The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
PLoS ONE (Impact Factor: 3.53). 03/2013; 8(3):e59821. DOI: 10.1371/journal.pone.0059821
Source: PubMed

ABSTRACT Golgins are coiled-coil proteins that play a key role in the regulation of Golgi architecture and function. Giantin, the largest golgin in mammals, forms a complex with p115, rab1, GM130, and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), thereby facilitating vesicle tethering and fusion processes around the Golgi apparatus. Treatment with the microtubule destabilizing drug nocodazole transforms the Golgi ribbon into individual Golgi stacks. Here we show that siRNA-mediated depletion of giantin resulted in more dispersed Golgi stacks after nocodazole treatment than by control treatment, without changing the average cisternal length. Furthermore, depletion of giantin caused an increase in cargo transport that was associated with altered cell surface protein glycosylation. Drosophila S2 cells are known to have dispersed Golgi stacks and no giantin homolog. The exogenous expression of mammalian giantin cDNA in S2 cells resulted in clustered Golgi stacks, similar to the Golgi ribbon in mammalian cells. These results suggest that the spatial organization of the Golgi ribbon is mediated by giantin, which also plays a role in cargo transport and sugar modifications.

0 Bookmarks
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood samples were harvested from the antecubital vein of 20 fasting patients with acute cerebral infarction at 1, 7 and 15 days after onset to prepare blood platelet suspension. Fasting antecubital vein blood was collected from an additional 20 normal adults as controls. Under transmission tron microscope, platelet Golgi tubules and vesicles became significantly thickened, enlarged, and irregular after acute cerebral infarction. Alpha granules in platelets significantly reduced in number, especially 1 day after cerebral infarction. Under immunoelectron microscopy, a few alpha granules aggregated around Golgi tubules and vesicles after infarction. These results suggested that platelet Golgi apparatus displayed significant morphological changes, which were possibly associated with enhanced synthetic and secretory functions of activated platelets after acute cerebral infarction. This study used Golgi apparatus blocking agent Brefeldin A to block Golgi apparatus in an aim to study the effects of Golgi apparatus on CD40L expression on the surface of activated platelets. Flow cytometry revealed that CD40L expression on activated platelet surfaces decreased significantly when Golgi apparatus was blocked, which indicated that Golgi apparatus participated in the synthesis and transport of CD40L to the platelet surface.
    Neural Regeneration Research 08/2013; 8(23):2134-43. DOI:10.3969/j.issn.1673-5374.2013.23.003 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes the data describing the role of cellular microtubules in transportation of membrane vesicles - transport containers for secreted proteins or lipids. Most events of early vesicular transport in animal cells (from the endoplasmic reticulum to the Golgi apparatus and in the opposite recycling direction) are mediated by microtubules and microtubule motor proteins. Data on the role of dynein and kinesin in early vesicle transport remain controversial, probably because of the differentiated role of these proteins in the movements of vesicles or membrane tubules with various cargos and at different stages of secretion and retrograde transport. Microtubules and dynein motor protein are essential for maintaining a compact structure of the Golgi apparatus; moreover, there is a set of proteins that are essential for Golgi compactness. Dispersion of ribbon-like Golgi often occurs under physiological conditions in interphase cells. Golgi is localized in the leading part of crawling cultured fibroblasts, which also depends on microtubules and dynein. The Golgi apparatus creates its own system of microtubules by attracting γ-tubulin and some microtubule-associated proteins to membranes. Molecular mechanisms of binding microtubule-associated and motor proteins to membranes are very diverse, suggesting the possibility of regulation of Golgi interaction with microtubules during cell differentiation. To illustrate some statements, we present our own data showing that the cluster of vesicles induced by expression of constitutively active GTPase Sar1a[H79G] in cells is dispersed throughout the cell after microtubule disruption. Movement of vesicles in cells containing the intermediate compartment protein ERGIC53/LMANI was inhibited by inhibiting dynein. Inhibiting protein kinase LOSK/SLK prevented orientation of Golgi to the leading part of crawling cells, but the activity of dynein was not inhibited according to data on the movement of ERGIC53/LMANI-marked vesicles.
    Biochemistry (Moscow) 09/2014; 79(9):879-93. DOI:10.1134/S0006297914090053 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Figure optionsDownload full-size imageDownload high-quality image (295 K)Download as PowerPoint slide

Full-text (2 Sources)

Download
31 Downloads
Available from
May 15, 2014