Topography of dilated perivascular spaces in subjects from a memory clinic cohort

and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain.
Neurology (Impact Factor: 8.29). 04/2013; 80(17). DOI: 10.1212/WNL.0b013e31828f1876
Source: PubMed


To investigate whether the topography of dilated perivascular spaces (DPVS) corresponds with markers of particular small-vessel diseases such as cerebral amyloid angiopathy and hypertensive vasculopathy.

Patients were recruited from an ongoing single-center prospective longitudinal cohort study of patients evaluated in a memory clinic. All patients underwent structural, high-resolution MRI, and had a clinical assessment performed within 1 year of scan. DPVS were rated in basal ganglia (BG-DPVS) and white matter (WM-DPVS) on T1 sequences, using an established 4-point semiquantitative score. DPVS degree was classified as high (score > 2) or low (score ≤ 2). Independent risk factors for high degree of BG-DPVS and WM-DPVS were investigated.

Eighty-nine patients were included (mean age 72.7 ± 9.9 years, 57% female). High degree of WM-DPVS was more frequent than low degree in patients with presence of strictly lobar microbleeds (45.5% vs 28.4% of subjects). High BG-DPVS degree was associated with older age, hypertension, and higher white matter hyperintensity volumes. In multivariate analysis, increased lobar microbleed count was an independent predictor of high degree of WM-DPVS (odds ratio [OR] 1.53 [95% confidence interval (CI) 1.06-2.21], p = 0.02). By contrast, hypertension was an independent predictor of high degree of BG-DPVS (OR 9.4 [95% CI 1-85.2], p = 0.04).

The associations of WM-DPVS with lobar microbleeds and BG-DPVS with hypertension raise the possibility that the distribution of DPVS may indicate the presence of underlying small-vessel diseases such as cerebral amyloid angiopathy and hypertensive vasculopathy in patients with cognitive impairment.

Download full-text


Available from: Sergi Martinez-Ramirez, Oct 05, 2015
1 Follower
23 Reads
  • Source
    • "Neuroimaging markers of amyloid load and CAA-related brain injury Microbleeds were identified on axial susceptibility-weighted imaging sequences by an experienced rater (S.M.R.) as described previously (Martinez-Ramirez et al., 2013). White matter hyperintensity segmentation on FLAIR MRI scans was performed using a semi-automated method (Gurol et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = -0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging markers of small-vessel disease. These findings suggest that reduced structural brain network efficiency might mediate the relationship between advanced cerebral amyloid angiopathy and neurologic dysfunction and that such large-scale brain network measures may represent useful outcome markers for tracking disease progression.
    Brain 11/2014; 138(1). DOI:10.1093/brain/awu316 · 9.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated whether severe, MRI-visible perivascular spaces (PVS) in the cerebral hemisphere white matter (centrum semiovale) are more common in patients with pathology-proven cerebral amyloid angiopathy (CAA) than in those with pathology-proven non-CAA-related intracerebral hemorrhage (ICH). Using a validated 4-point scale on axial T2-weighted MRI, we compared PVS in patients with pathology-proven CAA to PVS in those with spontaneous ICH but no histopathologic evidence of CAA. In a preliminary analysis restricted to patients with T2*-weighted gradient-recalled echo MRI, we also investigated whether including severe centrum semiovale PVS increases the sensitivity of existing diagnostic criteria for probable CAA. Fourteen patients with CAA and 10 patients with non-CAA-related ICH were included. Eight of the patients with CAA were admitted for symptomatic, spontaneous lobar ICH, 1 because of ischemic stroke, 1 with transient focal neurologic episodes, and 4 due to cognitive decline. Severe (>20) centrum semiovale PVS were more frequent in patients with CAA compared to controls (12/14 [85.7%; 95% confidence interval (CI): 57.2%-98.2%] vs 0/10 [1-sided 95% CI: 0%-30.8%], p < 0.0005); this was robust to adjustment for age. The original Boston criteria for probable CAA showed a sensitivity of 76.9% (95% CI: 46.2%-95%), which increased to 92.3% (95% CI: 64%-99.8%), without loss of specificity, after including severe centrum semiovale PVS. Severe centrum semiovale PVS on MRI may be a promising new neuroimaging marker for the in vivo diagnosis of CAA. However, our findings are preliminary and require confirmation and external validation in larger cohorts of pathology-proven CAA.
    Neurology 11/2013; 82(1). DOI:10.1212/01.wnl.0000438225.02729.04 · 8.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral microbleeds (microbleeds) are small, punctuate hypointense lesions seen in T2* Gradient-Recall Echo (GRE) and Susceptibility-Weighted (SWI) Magnetic Resonance Imaging (MRI) sequences, corresponding to areas of hemosiderin breakdown products from prior microscopic hemorrhages. They occur in the setting of impaired small vessel integrity, commonly due to either hypertensive vasculopathy or cerebral amyloid angiopathy. Microbleeds are more prevalent in individuals with Alzheimer's disease (AD) dementia and in those with both ischemic and hemorrhagic stroke. However they are also found in asymptomatic individuals, with increasing prevalence with age, particularly in carriers of the Apolipoprotein (APOE) ε4 allele. Other neuroimaging findings that have been linked with microbleeds include lacunar infarcts and white matter hyperintensities on MRI, and increased cerebral β-amyloid burden using (11)C-PiB Positron Emission Tomography. The presence of microbleeds has been suggested to confer increased risk of incident intracerebral hemorrhage - particularly in the setting of anticoagulation - and of complications of immunotherapy for AD. Prospective data regarding the natural history and sequelae of microbleeds are currently limited, however there is a growing evidence base that will serve to inform clinical decision-making in the future.
    Frontiers in Neurology 01/2014; 4:205. DOI:10.3389/fneur.2013.00205
Show more