Rapid Detection of HIV-1 Proviral DNA for Early Infant Diagnosis Using Recombinase Polymerase Amplification

Program for Appropriate Technology in Health, Seattle, Washington, USA.
mBio (Impact Factor: 6.79). 02/2013; 4(2). DOI: 10.1128/mBio.00135-13
Source: PubMed


ABSTRACT Early diagnosis and treatment of human immunodeficiency virus type 1 (HIV-1) infection in infants can greatly reduce mortality rates. However, current infant HIV-1 diagnostics cannot reliably be performed at the point of care, often delaying treatment and compromising its efficacy. Recombinase polymerase amplification (RPA) is a novel technology that is ideal for an HIV-1 diagnostic, as it amplifies target DNA in <20 min at a constant temperature, without the need for complex thermocycling equipment. Here we tested 63 HIV-1-specific primer and probe combinations and identified two RPA assays that target distinct regions of the HIV-1 genome (long terminal repeat [LTR] and pol) and can reliably detect 3 copies of proviral DNA by the use of fluorescence detection and lateral-flow strip detection. These pol and LTR primers amplified 98.6% and 93%, respectively, of the diverse HIV-1 variants tested. This is the first example of an isothermal assay that consistently detects all of the major HIV-1 global subtypes. IMPORTANCE Diagnosis of HIV-1 infection in infants cannot rely on the antibody-based tests used in adults because of the transfer of maternal HIV-1 antibodies from mother to child. Therefore, infant diagnostics rely on detection of the virus itself. However, current infant HIV-1 diagnostic methods require a laboratory setting with complex equipment. Here we describe the initial development of an HIV-1 diagnostic for infants that may be performed at the point of care in rural health clinics. We utilize a method that can amplify and detect HIV-1 DNA at an incubation temperature within the range of 25 to 42°C, eliminating the need for thermocycling equipment. HIV-1 diagnostics are challenging to develop due to the high diversity seen in HIV-1 strains worldwide. Here we show that this method detects the major HIV-1 strains circulating globally.

Download full-text


Available from: Lorraine Lillis, Apr 07, 2014
  • Source
    • "Under the optimal temperature (37 Ce42 C), the RPA reaction progresses rapidly, resulting in rapid amplification of target DNA from just a few copies to detectable levels, in typically less than 30 min [8]. In the literature, RPA has been applied to detect different DNA [9] [10] and RNA [11] [12]. However, it has not been used to detect any shrimp pathogen. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-infectious Penaeus stylirostris densovirus (PstDV)-related sequences in the shrimp genome cause false positive results with current PCR protocols. Here, we examined and mapped PstDV insertion profile in the genome of Australian P. monodon. A DNA sequence which is likely to represent infectious PstDV was also identified and used as a target sequence for recombinase polymerase amplification (RPA)-based approach, developed for specifically detecting PstDV. The RPA protocol at 37 °C for 30 min showed no cross-reaction with other shrimp viruses, and was 10 times more sensitive than the 309F/R PCR protocol currently recommended by the World Organization for Animal Health (OIE) for PstDV diagnosis. These features, together with the simplicity of the protocol, requiring only a heating block for the reaction, offer opportunities for rapid and efficient detection of PstDV.
    Molecular and Cellular Probes 08/2014; 28(5-6). DOI:10.1016/j.mcp.2014.08.002 · 1.85 Impact Factor
  • Source
    • "Reverse transcriptase, can be also included in RPA reactions to facilitate RPA from RNA targets such as Middle East Respiratory Syndrome Coronavirus or Rift Valley Fever [23], [24]. Recently RPA was been demonstrated to be highly sensitive for the detection of HIV proviral DNA [22] and in this work we have investigated the use of RPA to detect Mycobacterium tuberculosis DNA from patients presenting with suspected pulmonary TB. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39°C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays could be of use for integration into a point-of-care test for use in resource constrained settings.
    PLoS ONE 08/2014; 9(8):e103091. DOI:10.1371/journal.pone.0103091 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine coronavirus (BCoV) is an economically significant cause of calf scours and winter dysentery of adult cattle, and may induce respiratory tract infections in cattle of all ages. Early diagnosis of BCoV helps to diminish its burden on the dairy and beef industry. Real-time RT-PCR assay for the detection of BCoV has been described, but, it is relatively expensive, requires well-equipped laboratories and is not suitable for on-site screening. A novel assay, using reverse transcription recombinase polymerase amplification (RT-RPA), for the detection of BCoV is developed. The BCoV RT-RPA was rapid (10-20minutes) and has an analytical sensitivity of 19 molecules. No cross-reactivity with other viruses causing bovine gastrointestinal and/or respiratory infections was observed. The assay performance on clinical samples was validated by testing 16 fecal and 14 nasal swab specimens and compared to real-time RT-PCR. Both assays provided comparable results. The RT-RPA assay was significantly more rapid than the real-time RT-PCR assay. The BCoV RT-RPA constitutes a suitable accurate, sensitive and rapid alternative to the common measures used for BCoV diagnosis. In addition, the use of a portable fluorescence reading device extends its application potential to use in the field and point-of-care diagnosis.
    Journal of virological methods 06/2013; 193(2). DOI:10.1016/j.jviromet.2013.06.027 · 1.78 Impact Factor
Show more