Ghrelin: Central and Peripheral Implications in Anorexia Nervosa

UMR INSERM 837, Development and Plasticity of Postnatal Brain Lille, France.
Frontiers in Endocrinology 02/2013; 4:15. DOI: 10.3389/fendo.2013.00015
Source: PubMed

ABSTRACT Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin » signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: In restrictive type anorexia nervosa (AN) patients, physical activity is usually associated with food restriction but its physiological consequences remain poorly characterized. In female mice, we evaluated the impact of voluntary physical activity with/without chronic food restriction on metabolic and endocrine parameters that might contribute to AN. In this protocol, FRW mice (i.e. food restriction with running wheel) reached a crucial point of body weight loss (especially fat mass) faster than FR mice (i.e. food restriction only). However, in contrast to FR mice, their body weight stabilized, demonstrating a protective effect of a moderate, regular physical activity. Exercise delayed meal initiation and duration. FRW mice displayed food anticipatory activity compared to FR mice, which was strongly diminished with the prolongation of the protocol. The long-term nature of the protocol enabled assessment of bone parameters, similar to those observed in AN patients. Both restricted groups adapted their energy metabolism differentially in the short and long term, with less fat oxidation in FRW mice and a preferential use of glucose to compensate for the chronic energy imbalance. Finally, like restrictive AN patients, FRW mice exhibited low leptin levels, and high plasma concentrations of corticosterone and ghrelin and a disruption of estrous cycle. In conclusion, our model suggests that physical activity has beneficial effects on the adaptation to the severe condition of food restriction despite the absence of any protective effect on lean and bone mass. Copyright © 2014, American Journal of Physiology - Endocrinology and Metabolism.
    AJP Endocrinology and Metabolism 12/2014; 308(3):ajpendo.00340.2014. DOI:10.1152/ajpendo.00340.2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heshouwu, the root of Polygonum multiflorum, is an anti-aging Chinese traditional medicine. Fresh (raw) Heshouwu is commonly converted to processed Heshouwu by specialized heating to alleviate its side effects of diarrhea presumably caused by anthraquinones. However, raw Heshouwu has been noted to be better than processed Heshouwu regarding anti-aging effects. The therapeutic effects of raw Heshouwu on aging-related diseases were somehow similar to the anti-aging effects of growth hormone release induced by ghrelinMaterials and methodsMajor ingredients in the methanol extract from raw Heshouwu were separated and identified. Emodin-8-O-(6′-O-malonyl)-glucoside, a unique anthraquinone glycoside known to be completely eliminated in the conversion process of Heshouwu was isolated. This emodin derivative, tentatively named emoghrelin, was examined for its cytotoxicity and capability of stimulating growth hormone release of rat primary anterior pituitary cells via activation of the ghrelin receptor. Moreover, molecular modeling of emoghrelin docking to the ghrelin receptor was exhibited to explore the possible interaction within the binding pocket.ResultsNo apparent cytotoxicity was observed for emoghrelin of 10−7–10−4 M. Similar to growth hormone-releasing hormone-6 (GHRP-6), a synthetic analog of ghrelin, emoghrelin was demonstrated to stimulate growth hormone secretion of rat primary anterior pituitary cells in a dose dependent manner, and the stimulation was inhibited by [d-Arg1, d-Phe5, d-Trp7,9, Leu11]-substance P, an antagonist of the ghrelin receptor. Molecular modeling and docking showed that emoghrelin as well as GHRP-6 could fit in and adequately interact with the binding pocket of the ghrelin receptor.Conclusion The results suggest that emoghrelin is a key ingredient accounting for the anti-aging effects of Heshouwu, and possesses great potential to be a promising non-peptidyl analog of ghrelin.
    Journal of Ethnopharmacology 11/2014; 159. DOI:10.1016/j.jep.2014.10.063
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ScienceDirect j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p s y n e u e n Summary Ghrelin is a 28-amino-acid peptide hormone, first described in 1999 and broadly expressed in the organism. As the only known orexigenic hormone secreted in the periphery, it increases hunger and appetite, promoting food intake. Ghrelin has also been shown to be involved in various physiological processes being regulated in the central nervous system such as sleep, mood, memory and reward. Accordingly, it has been implicated in a series of psychiatric disorders, making it subject of increasing investigation, with knowledge rapidly accumulating. This review aims at providing a concise yet comprehensive overview of the role of ghrelin in psychiatric disorders. Ghrelin was consistently shown to exert neuroprotective and memory-enhancing effects and alleviated psychopathology in animal models of dementia. Few human studies show a disruption of the ghrelin system in dementia. It was also shown to play a crucial role in the pathophysiology of addictive disorders, promoting drug reward, enhancing drug seeking behavior and increasing craving in both animals and humans. Ghrelin's exact role in depression and anxiety is still being debated, as it was shown to both promote and alleviate depressive and anxiety-behavior in animal studies, with an overweight of evidence suggesting antidepressant effects. Not surprisingly, the ghrelin system is also implicated in eating disorders, however its exact role remains to be elucidated. Its widespread involvement has made the ghrelin system a promising target for future therapies, with encouraging findings in recent literature.
    Psychoneuroendocrinology 11/2014; 52:176-194. DOI:10.1016/j.psyneuen.2014.11.013