Generation of Transgene-Free iPSC Lines from Human Normal and Neoplastic Blood Cells Using Episomal Vectors.

Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2013; 997:163-76. DOI: 10.1007/978-1-62703-348-0_13
Source: PubMed

ABSTRACT Human induced pluripotent stem cells (iPSCs) have become an important tool for modeling human diseases and are considered a potential source of therapeutic cells. Original methods for iPSC generation use fibroblasts as a cell source for reprogramming and retroviral vectors as a delivery method of the reprogramming factors. However, fibroblasts require extended time for expansion and viral delivery of transgenes results in the integration of vector sequences into the genome which is a source of potential insertion mutagenesis, residual expressions, and reactivation of transgenes during differentiation. Here, we provide a detailed protocol for the efficient generation of transgene-free iPSC lines from human bone marrow and cord blood cells with a single transfection of non-integrating episomal plasmids. This method uses mononuclear bone marrow and cord blood cells, and makes it possible to generate transgene-free iPSCs 1-3 weeks faster than previous methods of reprogramming with fibroblasts. Additionally, we show that this approach can be used for efficient reprogramming of chronic myeloid leukemia cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Vision is the sense that we use to navigate the world around us. Thus it is not surprising that blindness is one of people’s most feared maladies. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through drug therapy, gene augmentation or a cell-based transplantation approach. In this review we will discuss the use of the induced pluripotent stem cell technology to model and develop various treatment modalities for the treatment of inherited retinal degenerative disease. We will focus on the use of iPSCs for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell transplantation and replacement.
    Progress in Retinal and Eye Research 11/2014; · 9.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed.
    Biomaterials 06/2014; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of " a patient in a dish " aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
    Journal of Clinical Medicine Research 02/2015; 4(2015 4):282-303.


Available from
Jul 19, 2014