Generation of Induced Pluripotent Stem Cells with CytoTune, a Non-Integrating Sendai Virus.

Primary and Stem Cell Systems, Life Technologies, Carlsbad, CA, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2013; 997:45-56. DOI: 10.1007/978-1-62703-348-0_5
Source: PubMed

ABSTRACT One of the major obstacles in generating induced pluripotent stem cells for research or downstream applications is the potential modifications of cellular genome as a result of using integrating viruses during reprogramming. Another major disadvantage of reprogramming cells with integrating vectors is that silencing and activation of transgenes are unpredictable, which may affect terminal differentiation potential and increase the risk of using iPSC-derived cells. Here we describe a protocol for the generation of induced pluripotent stem cells using a non-integrating RNA virus, Sendai virus, to efficiently generate transgene-free iPSCs starting with different cell types as well as in feeder-free conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: There are currently no known treatment options that actually halt or permanently reverse the pathology evident in any neurodegenerative condition. Arguably, one of the most promising avenues for creating viable neuronal treatments could involve the combined use of cell replacement and gene therapy. Given the complexity of the neurodegenerative process, it stands to reason that adequate therapy should involve not only the replacement of loss neurons/synapses but also the interruption of multiple pro-death pathways. Thus, we propose the use of stem cells that are tailored to express specific trophic factors, thereby potentially encouraging synergistic effects between the stem cell properties and those of the trophic factors. The trophic factors, brain-derived neurotropic factor (BDNF), glial cell-derived neurotropic factor (GDNF), fibroblast growth factor (FGF) 2, and insulin-like growth factor (IGF) 1, in particular, have demonstrated neuroprotective actions in a number of animal models. Importantly, we use a nonviral approach, thereby minimizing the potential risk for DNA integration and tumor formation. The present study involved the development of a nonviral reprogramming system to transform adult mature mouse fibroblasts into progressive stages of cell development. We also tailored these stem cells to individually express each of the trophic factors, including BDNF, GDNF, FGF2, and IGF1. Significantly, central infusion of BDNF-expressing stem cells prevented the in vivo loss of neurons associated with infusion of the endotoxin, lipopolysaccharide (LPS). This is particularly important in light of the role of inflammatory processes that are posited to play in virtually all neurodegenerative states. Hence, the present results support the utility of using combined gene and cell-targeting approaches for neuronal pathology.
    Molecular Neurobiology 03/2014; 50(2). DOI:10.1007/s12035-014-8680-2 · 5.29 Impact Factor
  • Neural Regeneration Research 06/2014; 9(11):1100-3. DOI:10.4103/1673-5374.135311 · 0.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick disease type C (NPC) is a rare neurodegenerative disorder caused by recessive mutations in the NPC1 or NPC2 gene that result in lysosomal accumulation of unesterified cholesterol in patient cells. Patient fibroblasts have been used for evaluation of compound efficacy, although neuronal degeneration is the hallmark of NPC disease. Here, we report the application of human NPC1 neural stem cells as a cell-based disease model to evaluate nine compounds that have been reported to be efficacious in the NPC1 fibroblasts and mouse models. These cells are differentiated from NPC1 induced pluripotent stem cells and exhibit a phenotype of lysosomal cholesterol accumulation. Treatment of these cells with hydroxypropyl-β-cyclodextrin, methyl-β-cyclodextrin, and δ-tocopherol significantly ameliorated the lysosomal cholesterol accumulation. Combined treatment with cyclodextrin and δ-tocopherol shows an additive or synergistic effect that otherwise requires 10-fold higher concentration of cyclodextrin alone. In addition, we found that hydroxypropyl-β-cyclodextrin is much more potent and efficacious in the NPC1 neural stem cells compared to the NPC1 fibroblasts. Miglustat, suberoylanilide hydroxamic acid, curcumin, lovastatin, pravastatin, and rapamycin did not, however, have significant effects in these cells. The results demonstrate that patient-derived NPC1 neural stem cells can be used as a model system for evaluation of drug efficacy and study of disease pathogenesis.
    Journal of Biomolecular Screening 06/2014; 19(8). DOI:10.1177/1087057114537378 · 2.01 Impact Factor