Article

Antioxidant and micronutrient-rich milk formula reduces lead poisoning and related oxidative damage in lead-exposed mice

Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.61). 03/2013; 57. DOI: 10.1016/j.fct.2013.03.020
Source: PubMed

ABSTRACT Lead poisoning is a global environmental disease that induces lifelong adverse health effects. The effect of a milk formula consisting of antioxidant of bamboo leaves (AOB), vitamin C (Vc) calcium lactate (CaLac), ferrous sulfate (FeSO4) and zinc sulfate (ZnSO4) on the reduction of lead and lead-induced oxidative damage in lead-exposed mice was studied. The lead-reducing effect of milk formula was investigated via a 7-week toxicokinetics study and a tissue distribution level examination. The ameliorating effect of milk formula on lead-induced oxidative damage was investigated. Results demonstrated current milk formula could effectively reduce blood lead levels (BLL) and lead distribution levels of liver, kidneys, thighbones and brain in mice based on metal ion-mediated antagonism and chelation mechanisms. This milk formula could not only protect lead-susceptible tissues against lead poisoning, but also maintain normal absorption and distribution of essential elements in vivo. Meanwhile, current milk formula could prevent the reduction of δ-aminolevulinic acid dehydratase (δ-ALAD) activity and enhancement of free erythrocyte protoporphyrins (FEP) levels in blood erythrocytes of mice. Also, this formula could indirectly protect blood cell membranes against lead-induced lipid peroxidation. We conclude that current optimized milk formula effectively reduces lead poisoning and lead-induced in vivo oxidative damage in lead-exposed mice.

0 Followers
 · 
125 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lead exposure is known to cause apoptotic neurodegeneration and neurobehavioral abnormalities in developing and adult brain by impairing cognition and memory. Coriandrum sativum is an herb belonging to Umbelliferae and is reported to have a protective effect against lead toxicity. In the present investigation, an attempt has been made to evaluate the protective activity of the hydroalcoholic extract of C. sativum seed against lead-induced oxidative stress. Male Wistar strain rats (100-120 g) were divided into four groups: control group: 1,000 mg/L of sodium acetate; exposed group: 1,000 mg/L lead acetate for 4 weeks; C. sativum treated 1 (CST1) group: 250 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure; C. sativum treated 2 (CST2) group: 500 mg/kg body weight/day for seven consecutive days after 4 weeks of lead exposure. After the exposure and treatment periods, rats were sacrificed by cervical dislocation, and the whole brain was immediately isolated and separated into four regions: cerebellum, hippocampus, frontal cortex, and brain stem along with the control group. After sacrifice, blood was immediately collected into heparinized vials and stored at 4 °C. In all the tissues, reactive oxygen species (ROS), lipid peroxidation products (LPP), and total protein carbonyl content (TPCC) were estimated following standard protocols. An indicator enzyme for lead toxicity namely delta-amino levulinic acid dehydratase (δ-ALAD) activity was determined in the blood. A significant (p < 0.05) increase in ROS, LPP, and TPCC levels was observed in exposed rat brain regions, while δ-ALAD showed a decrease indicating lead-induced oxidative stress. Treatment with the hydroalcoholic seed extract of C. sativum resulted in a tissue-specific amelioration of oxidative stress produced by lead.
    Biological trace element research 05/2014; DOI:10.1007/s12011-014-9989-4 · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our study aimed to assess the distribution of blood lead level and its relationship to essential elements in preschool children in an urban area of China. A total of 6741 children aged 0- to 6-year-old were recruited. Levels of lead, zinc, copper, iron, calcium, and magnesium in whole blood samples were determined using atomic absorption spectrometry. The mean blood lead level (BLL) and the prevalence of BLL≥10μg/dl (5.26±4.08μg/dl and 6.84%, respectively) increased with age gradually, and there was a gender-difference for blood lead, copper, zinc and iron levels. Compared with the group of children who had BLLs<5μg/dl, the groups of 5≤BLLs<10μg/dl and 10≤BLLs<15μg/dl showed higher blood zinc, iron and magnesium levels, and a lower blood calcium level. A positive correlation of lead with zinc, iron and magnesium, and a negative correlation of lead with calcium were found in the group of children with BLL<5μg/dl. Age- and gender-differences were found when assessing the BLL and intoxication prevalence in preschool children. Metabolic disorder of essential elements was found even with a low level of lead exposure. Copyright © 2014 Elsevier GmbH. All rights reserved.
    Journal of Trace Elements in Medicine and Biology 12/2014; 30. DOI:10.1016/j.jtemb.2014.12.005 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to investigate the effect of vitamins E (VE) and C (VC), combined with β-carotene (β-C), on cognitive function in the elderly. A total of 276 elderly subjects completed the prospective study following treatment with VE, VC and different doses of β-C or with VE only. Cognitive function was assessed by the Mini-Mental State Examination (MMSE) and Hasegawa Dementia Scale (HDS) tests. The plasma levels of amyloid-β (Aβ) and estradiol (E2) were determined by radioimmunoassay (RIA). Results from the MMSE and HDS assessments indicated that the treatment strategy of VE and VC combined with β-C significantly improved cognitive function in the elderly subjects, particularly with higher doses of β-C. Furthermore, RIA suggested that treatment with these vitamins could markedly reduce plasma Aβ levels and elevate plasma E2 levels. The present findings suggest that treatment with VE, VC and β-C results in promising improvements in cognitive function in the elderly.
    Experimental and therapeutic medicine 02/2015; 9(4). DOI:10.3892/etm.2015.2274 · 0.94 Impact Factor