Article

Single-Subject Grey Matter Graphs in Alzheimer's Disease

Beijing Normal University, China
PLoS ONE (Impact Factor: 3.53). 09/2013; 8(3):e58921. DOI: 10.1371/journal.pone.0058921
Source: PubMed

ABSTRACT Coordinated patterns of cortical morphology have been described as structural graphs and previous research has demonstrated that properties of such graphs are altered in Alzheimer's disease (AD). However, it remains unknown how these alterations are related to cognitive deficits in individuals, as such graphs are restricted to group-level analysis. In the present study we investigated this question in single-subject grey matter networks. This new method extracts large-scale structural graphs where nodes represent small cortical regions that are connected by edges when they show statistical similarity. Using this method, unweighted and undirected networks were extracted from T1 weighted structural magnetic resonance imaging scans of 38 AD patients (19 female, average age 72±4 years) and 38 controls (19 females, average age 72±4 years). Group comparisons of standard graph properties were performed after correcting for grey matter volumetric measurements and were correlated to scores of general cognitive functioning. AD networks were characterised by a more random topology as indicated by a decreased small world coefficient (p = 3.53×10(-5)), decreased normalized clustering coefficient (p = 7.25×10(-6)) and decreased normalized path length (p = 1.91×10(-7)). Reduced normalized path length explained significantly (p = 0.004) more variance in measurements of general cognitive decline (32%) in comparison to volumetric measurements (9%). Altered path length of the parahippocampal gyrus, hippocampus, fusiform gyrus and precuneus showed the strongest relationship with cognitive decline. The present results suggest that single-subject grey matter graphs provide a concise quantification of cortical structure that has clinical value, which might be of particular importance for disease prognosis. These findings contribute to a better understanding of structural alterations and cognitive dysfunction in AD.

1 Bookmark
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronary heart disease (CHD) has been linked with cognitive decline and dementia in several studies. CHD is strongly associated with blood pressure, but it is not clear how blood pressure levels or changes in blood pressure over time affect the relation between CHD and dementia-related pathology. The aim of this study was to investigate relations between CHD and cortical thickness, gray matter volume and white matter lesion (WML) volume on MRI, considering CHD duration and blood pressure levels from midlife to three decades later. The study population included 69 elderly at risk of dementia who participated in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. CAIDE participants were examined in midlife, re-examined 21 years later, and then after additionally 7 years (in total up to 30 years follow-up). MRIs from the second re-examination were used to calculate cortical thickness, gray matter and WML volume. CHD diagnoses were obtained from the Finnish Hospital Discharge Register. Linear regression analyses were adjusted for age, sex, follow-up time and scanner type, and additionally total intracranial volume in GM volume analyses. Adding diabetes, cholesterol or smoking to the models did not influence the results. CHD was associated with lower thickness in multiple regions, and lower total gray matter volume, particularly in people with longer disease duration (>10 years). Associations between CHD, cortical thickness and gray matter volume were strongest in people with CHD and hypertension in midlife, and those with CHD and declining blood pressure after midlife. No association was found between CHD and WML volumes. Based on these results, long-term CHD seems to have detrimental effects on brain gray matter tissue, and these effects are influenced by blood pressure levels and their changes over time.
    PLoS ONE 10/2014; 9(10):e109250. DOI:10.1371/journal.pone.0109250 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern network science has revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, hubs and rich clubs. The next challenge is to use this knowledge to gain a better understanding of brain disease. Recent developments in the application of network science to conditions such as Alzheimer's disease, multiple sclerosis, traumatic brain injury and epilepsy have challenged the classical concept of neurological disorders being either 'local' or 'global', and have pointed to the overload and failure of hubs as a possible final common pathway in neurological disorders.
    Nature reviews. Neuroscience 09/2014; 15(10). DOI:10.1038/nrn3801 · 31.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While these procedures have provided important insights about the characteristics of human brain networks, they ultimately rely on unwarranted assumptions such as those of noise-free data or the use of an arbitrary threshold. Therefore, resulting structural connectivity estimates as well as derived graph measures fail to fully take into account the inherent uncertainty in the structural estimate. In this paper, we illustrate an easy way of obtaining posterior distributions over graph metrics using Bayesian inference. It is shown that this posterior distribution can be used to quantify uncertainty about graph-theoretical measures at the single subject level, thereby providing a more nuanced view of the graph-theoretical properties of human brain connectivity. We refer to this model-based approach to connectivity analysis as Bayesian connectomics.
    Frontiers in Computational Neuroscience 10/2014; 8:126. DOI:10.3389/fncom.2014.00126 · 2.23 Impact Factor

Full-text

Download
114 Downloads
Available from
May 22, 2014