Article

Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

University of Padova, Italy
PLoS ONE (Impact Factor: 3.53). 03/2013; 8(3):e58054. DOI: 10.1371/journal.pone.0058054
Source: PubMed

ABSTRACT During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR-/-) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR-/- macrophages with increasing concentrations of (125)I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on (125)I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect (125)I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR-/- mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries.

0 Bookmarks
 · 
182 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective: To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results: We crossed Sort1-/- mice onto a 'humanized' Apobec1-/-; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1-/-;LDLR-/- or Sort1+/+;LDLR-/- bone marrow into Ldlr-/- mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions: Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development.
    Circulation Research 01/2015; DOI:10.1161/CIRCRESAHA.116.305811 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transformation of macrophages into lipid-loaded foam cells is a critical early event in the pathogenesis of atherosclerosis. Both receptor-mediated uptake of modified LDL, mediated primarily by scavenger receptors-A (SR-A) and CD36 along with other proteins such as lipoprotein lipase (LPL), and macropinocytosis contribute to macrophage foam cell formation. The signaling pathways that are involved in the control of foam cell formation are not fully understood. In this study, we have investigated the role of phosphoinositide 3-kinase (PI3K) in relation to foam cell formation in human macrophages. The pan PI3K inhibitor LY294002 attenuated the uptake of modified LDL and macropinocytosis, as measured by Lucifer Yellow uptake, by human macrophages. In addition, the expression of SR-A, CD36 and LPL was attenuated by LY294002. The use of isoform-selective PI3K inhibitors showed that PI3K-β, -γ and -δ were all required for the expression of SR-A and CD36 whereas only PI3K-γ was necessary in the case of LPL. These studies reveal a pivotal role of PI3K in the control of macrophage foam cell formation and provide further evidence for their potential as therapeutic target against atherosclerosis.
    Lipids 02/2015; DOI:10.1007/s11745-015-3993-0 · 2.56 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Mar 4, 2015