Global increases in both common and rare copy number load associated with autism

Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195.
Human Molecular Genetics (Impact Factor: 6.68). 03/2013; 22(14). DOI: 10.1093/hmg/ddt136
Source: PubMed

ABSTRACT Children with autism have an elevated frequency of large, rare copy number variants (CNVs). However, the global load of deletions or duplications, per se, and their size, location and relationship to clinical manifestations of autism have not been documented. We examined CNV data from 516 individuals with autism or typical development from the population-based Childhood Autism Risks from Genetics and Environment (CHARGE) study. We interrogated 120 regions flanked by segmental duplications (genomic hotspots) for events >50 kbp and the entire genomic backbone for variants >300 kbp using a custom targeted DNA microarray. This analysis was complemented by a separate study of five highly dynamic, hotspots associated with autism or developmental delay syndromes using a finely-tiled array platform (>1 kbp) in 142 children matched for gender and ethnicity. In both studies, a significant increase in the number of base pairs of duplication, but not deletion, was associated with autism. Significantly elevated levels of CNV load remained after removal of rare and likely pathogenic events. Further, the entire CNV load detected with the finely-tiled array was contributed by common variants. The impact of this variation was assessed by examining the correlation of clinical outcomes with CNV load. The level of personal and social skills, measured by Vineland Adaptive Behavior Scales, negatively correlated (Spearman's r=-0.13, p=0.034) with the duplication CNV load for the affected children; the strongest association was found for communication (p=0.048) and socialization (p=0.022) scores. We propose that CNV load, predominantly increased genomic base pairs of duplication, predisposes to autism.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.
    Translational Psychiatry 09/2014; 4(9):e431. DOI:10.1038/tp.2014.78 · 4.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The FMR1 premutation is defined as having 55 to 200 CGG repeats in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1). The clinical involvement has been well characterized for fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). The behavior/psychiatric and other neurological manifestations remain to be specified as well as the molecular mechanisms that will explain the phenotypic variability observed in individuals with the FMR1 premutation.
    Journal of Neurodevelopmental Disorders 07/2014; 6(1):27. DOI:10.1186/1866-1955-6-27 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described "distal" 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis.
    The American Journal of Human Genetics 06/2014; 94(6):870-883. DOI:10.1016/j.ajhg.2014.05.004 · 10.99 Impact Factor

Full-text (3 Sources)

Available from
May 27, 2014