Phenylmethimazole Suppresses dsRNA-Induced Cytotoxicity and Inflammatory Cytokines in Murine Pancreatic Beta Cells and Blocks Viral Acceleration of Type 1 Diabetes in NOD Mice

Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA. .
Molecules (Impact Factor: 2.1). 04/2013; 18(4):3841-3858. DOI: 10.3390/molecules18043841
Source: PubMed

ABSTRACT Accumulating evidence supports a role for viruses in the pathogenesis of type 1 diabetes mellitus (T1DM). Activation of dsRNA-sensing pathways by viral dsRNA induces the production of inflammatory cytokines and chemokines that trigger beta cell apoptosis, insulitis, and autoimmune-mediated beta cell destruction. This study was designed to evaluate and describe potential protective effects of phenylmethimazole (C10), a small molecule which blocks dsRNA-mediated signaling, on preventing dsRNA activation of beta cell apoptosis and the inflammatory pathways important in the pathogenesis of T1DM. We first investigated the biological effects of C10, on dsRNA-treated pancreatic beta cells in culture. Cell viability assays, quantitative real-time PCR, and ELISAs were utilized to evaluate the effects of C10 on dsRNA-induced beta cell cytotoxicity and cytokine/chemokine production in murine pancreatic beta cells in culture. We found that C10 significantly impairs dsRNA-induced beta cell cytotoxicity and up-regulation of cytokines and chemokines involved in the pathogenesis of T1DM, which prompted us to evaluate C10 effects on viral acceleration of T1DM in NOD mice. C10 significantly inhibited viral acceleration of T1DM in NOD mice. These findings demonstrate that C10 (1) possesses novel beta cell protective activity which may have potential clinical relevance in T1DM and (2) may be a useful tool in achieving a better understanding of the role that dsRNA-mediated responses play in the pathogenesis of T1DM.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Double-stranded RNA (dsRNA) is arguably the most potent viral trigger of innate immune signaling. Its activity has been recognized for over 5 decades, first as a toxin, then as a central component of the interferon system, as an efficient activator of antiviral responses and an immunomodulator for therapeutic applications. Nucleic acid sensing is the main basis for antiviral defense systems throughout the diverse forms of life from bacteria to plants and animals. Pattern recognition receptors of the host defense system not only sense viral dsRNA as a pathogen-associated molecular pattern in infected cells, but also recognize circulating endogenous dsRNA, a nonmicrobial signal, as a danger-associated molecular pattern, often leading to autoimmunity. Despite the effects of extracellular viral and host dsRNA associated with infection and autoimmunity, respectively, the understanding of cellular mechanisms for its recognition and uptake has only been appreciated in recent years. This review presents an overview of this unique form of nucleic acid, addressing its roles in infection, autoimmunity, and host sensing mechanisms. The goal of this review is to highlight the novel findings with a focus on extracellular recognition and uptake by the cell.
    Journal of Interferon & Cytokine Research 06/2014; 34(6):419-426. DOI:10.1089/jir.2014.0002 · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical ResearchPhenylmethimazole (C10) is an inhibitor of Toll-like receptor (TLR3 and TLR4) expression and signaling. In this study, we carried out a detailed investigation of the effect of C10 on TLR4 and its molecular signaling products in RAW 264.7 macrophages using quantitative real-time polymerase chain reaction (PCR), ELISA and cell toxicity assays, a set of in vitro assays that may be used to screen future C10 analogs. C10 exhibited an inhibitory effect on TLR4 MyD88-dependent and MyD88-independent pathways. Within the TLR4 pathway, C10 inhibited the expression of cytokines, cytokine receptors, kinases, adapter molecules and transcription factors, suggesting a pathway-wide inhibitory effect. We also found that C10 dose-dependently inhibited the expression of TLR4 signaling products, specifically IL-6, inducible nitric oxide (NO) synthase and IFNβ. Additionally, pre-treatment of RAW 264.7 cells with C10 resulted in protection from lipopolysaccharide (LPS) insults, suggesting C10 may be bound to the target thus exhibiting activity during/following LPS stimulation. Also, dimethyl sulfoxide, the solvent for C10 exhibited inhibitory effect on TLR4 signaling products independent from the effects of C10. Combined, this study enhances understanding of the actions of action on TLR4 signaling pathway providing a path for the development of new C10 analogs for inhibiting TLR expression and signaling.
    Drug Development Research 12/2014; DOI:10.1002/ddr.21231 · 0.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes (T1D) is due to antigen-specific assaults on the insulin producing pancreatic β-cells by diabetogenic T-helper (Th)1 cells. (C-X-C motif) ligand (CXCL)10, an interferon-γ inducible Th1 chemokine, and its receptor, (C-X-C motif) receptor (CXCR)3, have an important role in different autoimmune diseases. High circulating CXCL10 levels were detected in new onset T1D patients, in association with a Th1 autoimmune response. Furthermore β-cells produce CXCL10, under the influence of Th1 cytokines, that suppresses their proliferation. Viral β-cells infections induce cytokines and CXCL10 expression, inducing insulin-producing cell failure in T1D. CXCL10/CXCR3 system plays a critical role in the autoimmune process and in β-cells destruction in T1D. Blocking CXCL10 in new onset diabetes seems a possible approach for T1D treatment.
    Cytokine & growth factor reviews 02/2014; DOI:10.1016/j.cytogfr.2014.01.006 · 6.49 Impact Factor


Available from
Feb 9, 2015