Article

CNV Analysis in Tourette Syndrome Implicates Large Genomic Rearrangements in COL8A1 and NRXN1

Cincinnati Children’s Hospital Medical Center, United States of America
PLoS ONE (Impact Factor: 3.53). 03/2013; 8(3):e59061. DOI: 10.1371/journal.pone.0059061
Source: PubMed

ABSTRACT Tourette syndrome (TS) is a neuropsychiatric disorder with a strong genetic component. However, the genetic architecture of TS remains uncertain. Copy number variation (CNV) has been shown to contribute to the genetic make-up of several neurodevelopmental conditions, including schizophrenia and autism. Here we describe CNV calls using SNP chip genotype data from an initial sample of 210 TS cases and 285 controls ascertained in two Latin American populations. After extensive quality control, we found that cases (N = 179) have a significant excess (P = 0.006) of large CNV (>500 kb) calls compared to controls (N = 234). Amongst 24 large CNVs seen only in the cases, we observed four duplications of the COL8A1 gene region. We also found two cases with ∼400kb deletions involving NRXN1, a gene previously implicated in neurodevelopmental disorders, including TS. Follow-up using multiplex ligation-dependent probe amplification (and including 53 more TS cases) validated the CNV calls and identified additional patients with rearrangements in COL8A1 and NRXN1, but none in controls. Examination of available parents indicates that two out of three NRXN1 deletions detected in the TS cases are de-novo mutations. Our results are consistent with the proposal that rare CNVs play a role in TS aetiology and suggest a possible role for rearrangements in the COL8A1 and NRXN1 gene regions.

Download full-text

Full-text

Available from: Lauren M. McGrath, Jun 25, 2015
1 Follower
 · 
271 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Georges Gilles de la Tourette, in describing the syndrome that now bears his name, observed that the condition aggregated within families. Over the last three decades, numerous studies have confirmed this observation, and demonstrated that familial clustering is in part due to genetic factors. Recent studies are beginning to provide clues about the underlying genetic mechanisms important for the manifestation of some cases of Tourette Disorder (TD). Evidence has come from different study designs, such as nuclear families, twins, multigenerational families, and case-control samples, together examining the broad spectrum of genetic variation including cytogenetic abnormalities, copy number variants, genome-wide association of common variants, and sequencing studies targeting rare and/or de novo variation. Each of these classes of genetic variation holds promise for identifying the causative genes and biological pathways contributing to this paradigmatic neuropsychiatric disorder.
    Journal of Obsessive-Compulsive and Related Disorders 06/2014; 3(4). DOI:10.1016/j.jocrd.2014.06.003 · 0.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a "paired" duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.
    The American Journal of Human Genetics 10/2014; 95(4):454-61. DOI:10.1016/j.ajhg.2014.09.005 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tourette syndrome (TS) is a childhood onset neurodevelopmental disorder. Although it is widely accepted that genetic factors play a significant role in TS pathogenesis the etiology of this disorder is largely unknown. Identification of rare copy number variations (CNVs) as susceptibility factors in several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism and schizophrenia, suggests involvement of these rare structural changes also in TS etiology. In a male patient with TS, ADHD, and OCD (obsessive compulsive disorder) we identified two microduplications (at 15q13.3 and Xq21.31) inherited from a mother with subclinical ADHD. The 15q duplication included the CHRNA7 gene; while two genes, PABPC5 and PCDH11X, were within the Xq duplication. The Xq21.31 duplication was present in three brothers with TS including the proband, but not in an unaffected brother, whereas the 15q duplication was present only in the proband and his mother. The structural variations observed in this family may contribute to the observed symptoms, but further studies are necessary to investigate the possible involvement of the described variations in the TS etiology. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 12/2013; 162(8). DOI:10.1002/ajmg.b.32186 · 3.27 Impact Factor