Article

Distinct Roles for Neutrophils and Dendritic Cells in Inflammation and Autoimmunity in motheaten Mice

Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
Immunity (Impact Factor: 19.75). 03/2013; 38(3):489-501. DOI: 10.1016/j.immuni.2013.02.018
Source: PubMed

ABSTRACT The motheaten mouse has long served as a paradigm for complex autoimmune and inflammatory disease. Null mutations in Ptpn6, which encodes the nonreceptor protein-tyrosine phosphatase Shp1, cause the motheaten phenotype. However, Shp1 regulates multiple signaling pathways in different hematopoietic cell types, so the cellular and molecular mechanism of autoimmunity and inflammation in the motheaten mouse has remained unclear. By using floxed Ptpn6 mice, we dissected the contribution of innate immune cells to the motheaten phenotype. Ptpn6 deletion in neutrophils resulted in cutaneous inflammation, but not autoimmunity, providing an animal model of human neutrophilic dermatoses. By contrast, dendritic cell deletion caused severe autoimmunity, without inflammation. Genetic and biochemical analysis showed that inflammation was caused by enhanced neutrophil integrin signaling through Src-family and Syk kinases, whereas autoimmunity resulted from exaggerated MyD88-dependent signaling in dendritic cells. Our data demonstrate that disruption of distinct Shp1-regulated pathways in different cell types combine to cause motheaten disease.

0 Followers
 · 
128 Views
  • Nature Reviews Immunology 04/2013; DOI:10.1038/nri3450 · 33.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) initiate and shape both the innate and adaptive immune responses. Accordingly, recent evidence from clinical studies and experimental models implicates DCs in the pathogenesis of most autoimmune diseases. However, fundamental questions remain unanswered concerning the actual roles of DCs in autoimmunity, both in general and, in particular, in specific diseases. In this Review, we discuss the proposed roles of DCs in immunological tolerance, the effect of the gain or loss of DCs on autoimmunity and DC-intrinsic molecular regulators that help to prevent the development of autoimmunity. We also review the emerging roles of DCs in several autoimmune diseases, including autoimmune myocarditis, multiple sclerosis, psoriasis, type 1 diabetes and systemic lupus erythematosus.
    Nature Reviews Immunology 07/2013; 13(8). DOI:10.1038/nri3477 · 33.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deletion of lyn, a Src-family tyrosine kinase expressed by B, myeloid, and dendritic cells (DCs), triggers lupus-like disease in mice, characterized by autoantibody production and renal immune complex deposition leading to chronic glomerulonephritis. B cells from these mice are hyperactive to antigen-receptor stimulation owing to a loss of inhibitory signaling mediated by Lyn kinase. The hyperactive B-cell responses are thought to underlie the development of autoimmunity in this model. Lyn-deficient mice also manifest significant myeloexpansion. To test the contribution of different immune cell types to the lupus-like disease in this model, we generated a lyn(flox/flox) transgenic mouse strain. To our surprise, when we crossed these mice to Cd11c-cre animals, generating DC-specific deletion of Lyn, the animals developed spontaneous B- and T-cell activation and subsequent production of autoantibodies and severe nephritis. Remarkably, the DC-specific Lyn-deficient mice also developed severe tissue inflammatory disease, which was not present in the global lyn(-/-) strain. Lyn-deficient DCs were hyperactivated and hyperresponsive to Toll-like receptor agonists and IL-1β. To test whether dysregulation of these signaling pathways in DCs contributed to the inflammatory/autoimmune phenotype, we crossed the lyn(f/f) Cd11c-cre(+) mice to myd88(f/f) animals, generating double-mutant mice lacking both Lyn and the adaptor protein myeloid differentiation factor 88 (MyD88) in DCs, specifically. Deletion of MyD88 in DCs alone completely reversed the inflammatory autoimmunity in the DC-specific Lyn-mutant mice. Thus, we demonstrate that hyperactivation of MyD88-dependent signaling in DCs is sufficient to drive pathogenesis of lupus-like disease, illuminating the fact that dysregulation in innate immune cells alone can lead to autoimmunity.
    Proceedings of the National Academy of Sciences 08/2013; 110(35). DOI:10.1073/pnas.1300617110 · 9.81 Impact Factor
Show more