Dissociable Neural Processes Underlying Risky Decisions for Self Versus Other

Laboratory of Social and Decision Neuroscience, Department of Brain and Cognitive Engineering, Korea University Seoul, South Korea.
Frontiers in Neuroscience (Impact Factor: 3.66). 03/2013; 7:15. DOI: 10.3389/fnins.2013.00015
Source: PubMed


Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for oneself. The present study directly compared risky decisions for self with those for another person using functional magnetic resonance imaging (fMRI). Participants were asked to perform a gambling task on behalf of themselves (decision-for-self condition) or another person (decision-for-other condition) while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points) and a high-risk option (i.e., win or lose 90 points) with variable levels of winning probability. Compared with choices regarding others, those regarding oneself were more risk-averse at lower winning probabilities and more risk-seeking at higher winning probabilities, perhaps due to stronger affective process during risky decisions for oneself compared with those for other. The brain-activation pattern changed according to the target, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM) showed greater activation in the decision-for-other condition than in the decision-for-self condition. Parametric modulation analysis using individual decision models revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC) were associated with value computations for oneself and for another, respectively, during risky financial decisions. The results of the present study suggest that decisions for oneself and for other may recruit fundamentally distinct neural processes, which can be mainly characterized as dominant affective/impulsive and cognitive/regulatory processes, respectively.

Download full-text


Available from: Hackjin Kim, Oct 29, 2014
38 Reads
  • Source
    • " the intensity of the others ' pain ( Cheng et al . , 2007 ; Saarela et al . , 2007 ) , directly linking this activity to inferences about the other ' s perspective . A similar self - other overlap has been noted when making reward chooses on behalf of others in the vmPFC ( Nicolle et al . , 2012 ; Suzuki et al . , 2012 ; Janowski et al . , 2013 ; Jung et al . , 2013 ; Morelli et al . , 2015 ) , suggesting that in order to predict the preferences of others , we simulate them in ourselves . In sum , neural activity in the self - other overlap when observing / inferring the perspectives of others appears to denote that aspects of the others ' experience are being simulated ; the SE component of simula"
    [Show abstract] [Hide abstract]
    ABSTRACT: One route to understanding the thoughts and feelings of others is by mentally putting one's self in their shoes and seeing the world from their perspective, i.e., by simulation. Simulation is potentially used not only for inferring how others feel, but also for predicting how we ourselves will feel in the future. For instance, one might judge the worth of a future reward by simulating how much it will eventually be enjoyed. In intertemporal choices between smaller immediate and larger delayed rewards, it is observed that as the length of delay increases, delayed rewards lose subjective value; a phenomenon known as temporal discounting. In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices. This framework yields a testable psychological account of temporal discounting based on simulation. Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.
    Frontiers in Neuroscience 04/2015; 9. DOI:10.3389/fnins.2015.00094 · 3.66 Impact Factor
  • Source
    • "Despite the significance of this finding in expanding our view of the role of DMPFC in mentalization, it is important to note that the participants in the study had prior knowledge about the choices of the partners through extensive practice and, thus, the task used in the study did not require active inferences of the partners' preferences. Given that uncertainty is an inevitable key component of estimating the choices of others, the DMPFC appears to have a privileged role in inferring the preferences of others (Jenkins and Mitchell, 2010; Cooper et al., 2012; Jung et al., 2013), at least before we become fully familiar with the preferences of others. It is important to examine whether the role of the DMPFC in modeling choices changes as a function of learning the preferences of others. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to accurately estimate another person's preferences is crucial for a successful social life. In daily interactions, we often do this on the basis of minimal information. The aims of the present study were (a) to examine whether people can accurately judge others based only on a brief exposure to their appearances, and (b) to reveal the underlying neural mechanisms with functional magnetic resonance imaging (fMRI). Participants were asked to make guesses about unfamiliar target individuals' preferences for various items after looking at their faces for 3 s. The behavioral results showed that participants estimated others' preferences above chance level. The fMRI data revealed that higher accuracy in preference estimation was associated with greater activity in the dorsomedial prefrontal cortex (DMPFC) when participants were guessing the targets' preferences relative to thinking about their own preferences. These findings suggest that accurate estimations of others' preferences may require increased activity in the DMPFC. A functional connectivity analysis revealed that higher accuracy in preference estimation was related to increased functional connectivity between the DMPFC and the brain regions that are known to be involved in theory of mind processing, such as the temporoparietal junction (TPJ) and the posterior cingulate cortex (PCC)/precuneus, during correct vs. incorrect guessing trials. On the contrary, the tendency to refer to self-preferences when estimating others' preference was related to greater activity in the ventromedial prefrontal cortex. These findings imply that the DMPFC may be a core region in estimating the preferences of others and that higher accuracy may require stronger communication between the DMPFC and the TPJ and PCC/precuneus, part of a neural network known to be engaged in mentalizing.
    Frontiers in Human Neuroscience 11/2013; 7:686. DOI:10.3389/fnhum.2013.00686 · 2.99 Impact Factor
  • Source
    Frontiers in Neuroscience 11/2013; 7:218. DOI:10.3389/fnins.2013.00218 · 3.66 Impact Factor
Show more