Article

Clinical-Scale Derivation of Natural Killer Cells From Human Pluripotent Stem Cells for Cancer Therapy.

Department of Medicine (Hematology, Oncology, and Transplant) and.
Stem cells translational medicine 03/2013; DOI: 10.5966/sctm.2012-0084
Source: PubMed

ABSTRACT Adoptive transfer of antitumor lymphocytes has gained intense interest in the field of cancer therapeutics over the past two decades. Human natural killer (NK) cells are a promising source of lymphocytes for anticancer immunotherapy. NK cells are part of the innate immune system and exhibit potent antitumor activity without need for human leukocyte antigen matching and without prior antigen exposure. Moreover, the derivation of NK cells from pluripotent stem cells could provide an unlimited source of lymphocytes for off-the-shelf therapy. To date, most studies on hematopoietic cell development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have used incompletely defined conditions and been on a limited scale. Here, we have used a two-stage culture system to efficiently produce NK cells from hESCs and iPSCs in the absence of cell sorting and without need for xenogeneic stromal cells. This novel combination of embryoid body formation using defined conditions and membrane-bound interleukin 21-expressing artificial antigen-presenting cells allows production of mature and functional NK cells from several different hESC and iPSC lines. Although different hESC and iPSC lines had varying efficiencies in hematopoietic development, all cell lines tested could produce functional NK cells. These methods can be used to generate enough cytotoxic NK cells to treat a single patient from fewer than 250,000 input hESCs/iPSCs. Additionally, this strategy provides a genetically amenable platform to study normal NK cell development and education in vitro.

0 Bookmarks
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells recognize deranged cells that display stress receptors or loss of major histocompatibility complex (MHC) class I. During development, NK cells become “licensed” only after they encounter cognate human leukocyte antigen (HLA) class I, leading to the acquisition of effector function. NK cells can be exploited for cancer therapy in several ways. These include targeting with monoclonal antibodies alone or combined with ex vivo and in vivo NK cell activation to facilitate adoptive immunotherapy using donor-derived NK cell products to induce graft-vs-tumor effects. In the adoptive transfer setting, persistence and in vivo expansion requires lymphodepleting chemotherapy to prevent rejection and provide homeostatic cytokines (such as IL-15) that activate NK cells. IL-15 has the advantage of avoiding regulatory T-cell expansion. Clinical applications are currently being tested. To enhance in vivo expansion, IL-2 has been used at low doses. However, low dose administration also leads to the stimulation of regulatory T cells. Monoclonal antibodies and bispecific killer engagers (BiKEs) may enhance specificity by targeting CD16 on NK cells to tumor antigens. Inhibition of CD16 shedding may also promote enhanced cytotoxicity. Future strategies include exploiting favorable donor immunogenetics or ex vivo expansion of NK cells from blood, progenitors, or pluripotent cells. Comparative clinical trials are needed to test these approaches.
    Seminars in Immunology 01/2014; · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented.
    Blood research. 03/2014; 49(1):7-14.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation.
    Blood Cancer Journal 01/2014; 4:e211. · 1.40 Impact Factor

Full-text

View
239 Downloads
Available from
May 17, 2014