Integration of fluoroscopy-based guidance in orthopaedic trauma surgery - A prospective cohort study

Ulm University, Institute of Research in Rehabilitation Medicine, Wuhrstrasse 2/1, 88422 Bad Buchau, Germany
Injury (Impact Factor: 2.46). 03/2013; 44(11). DOI: 10.1016/j.injury.2013.02.008
Source: PubMed

ABSTRACT INTRODUCTION: Computer-assisted guidance systems are not used frequently for musculoskeletal injuries unless there are potential advantages. We investigated a novel fluoroscopy-based image guidance system in orthopaedic trauma surgery. MATERIALS AND METHODS: The study was a prospective, not randomised, single-centre case series at a level I trauma centre. A total of 45 patients with 46 injuries (foot 12, shoulder 10, long bones seven, hand and wrist seven, ankle seven and spine and pelvis four) were included. Different surgical procedures were examined following the basic principles of the Arbeitsgemeinschaft für Osteosynthesefragen/Association for the Study of Internal Fixation (AO/ASIF). Main outcome measurements were the number of trials for implant placement, total surgery time, usability via user questionnaire and system failure rate. RESULTS: In all cases, the trajectory function was used, inserting a total of 56 guided implants. The system failed when used in pelvic and spinal injuries, resulting in a total failure rate of 6.5% (n=3) of all included cases. The overall usability was rated as good, scoring 84.3%. CONCLUSION: The novel image-guidance system could be integrated into the surgical workflow and was used successfully in orthopaedic trauma surgery. Expected advantages should be explored in randomised studies.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posterior instrumentation of the cervical spine has become increasingly popular in recent years. Dissatisfaction with lateral mass fixation, especially at the cervico-thoracic junction, has led spine surgeons to use pedicle screws. The improved biomechanical stability of pedicle screws and transarticular C1/2 screws allows for shorter instrumentations and improves the repositioning possibilities. Nevertheless, there are potential risks of iatrogenic damage to the spinal cord, nerve roots or the vertebral artery with both techniques. Therefore, the aim of this study was to evaluate whether C1/2 transarticular screws and transpedicular screws can be applied safely and with high accuracy in the cervical spine and the cervico-thoracic junction using a computer-assisted surgery system (CAS system). Posterior instrumentation was performed using the Brainlab VectorVision System (BrainLAB, Heimstetten, Germany) in 19 patients. Surface matching was used for registration. We placed 22 transarticular screws C1/2, 31 cervical pedicle screws, 10 high thoracic pedicle screws and one lateral mass screw C1. The screw position was evaluated postoperatively using CT with multiplanar reconstruction in the screw axis of each screw. None of the transarticular screws or pedicle screws was significantly (>2 mm) misplaced and no screw-related injury to vascular, neurogenic or bony structures was observed. No screw revision was necessary. The mean operation time was 144 min (90-240 min) and the mean blood loss was 234 ml (50-800 ml). C1/2 transarticular screws, as well as transpedicular screws in the cervical spine and the cervico-thoracic junction, can be applied safely and with high accuracy using a CAS system. Computer-assisted instrumentation is recommended especially for pedicle screws at C3-C6.
    European Spine Journal 02/2004; 13(1):50-9. DOI:10.1007/s00586-003-0604-1 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spine surgery using computer-assisted navigation (CAN) has been proven to result in low screw misplacement rates, low incidence of radiation exposure and excellent operative field viewing versus the conventional intraoperative image intensifier (CIII). However, as we know, few previous studies have described the learning curve of CAN in spine surgery. We performed two consecutive case cohort studies on pedicel screw accuracy and operative time of two spine surgeons with different experience backgrounds, A and B, in one institution during the same period. Lumbar pedicel screw cortical perforation rate and operative time of the same kind of operation using CAN were analyzed and compared using CIII for the two surgeons at initial, 6 months and 12 months of CAN usage. CAN spine surgery had an overall lower cortical perforation rate and less mean operative time compared with CIII for both surgeon A and B cohorts when total cases of four years were included. It missed being statistically significant, with 3.3% versus 4.7% (P = 0.191) and 125.7 versus 132.3 minutes (P = 0.428) for surgeon A and 3.6% versus 6.4% (P = 0.058), and 183.2 versus 213.2 minutes (P = 0.070) for surgeon B. In an attempt to demonstrate the learning curve, the cases after 6 months of the CAN system in each surgeon's cohort were compared. The perforation rate decreased by 2.4% (P = 0.039) and 4.3% (P = 0.003) and the operative time was reduced by 31.8 minutes (P = 0.002) and 14.4 minutes (P = 0.026) for the CAN groups of surgeons A and B, respectively. When only the cases performed after 12 months using the CAN system were considered, the perforation rate decreased by 3.9% (P = 0.006) and 5.6% (P < 0.001) and the operative time was reduced by 20.9 minutes (P < 0.001) and 40.3 minutes (P < 0.001) for the CAN groups of surgeon A and B, respectively. In the long run, CAN spine surgery decreased the lumbar screw cortical perforation rate and operative time. The learning curve showed a sharp drop after 6 months of using CAN that plateaued after 12 months; which was demonstrated by both perforation rate and operative time data. Careful analysis of the data showed CAN is especially useful for less experienced surgeon to reduce perforation rate and intraoperative time, although further comparative studies are anticipated.
    Chinese medical journal 11/2010; 123(21):2989-94. · 1.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We did a systematic review to address the added value of intraoperative MRI (iMRI)-guided resection of glioblastoma multiforme compared with conventional neuronavigation-guided resection, with respect to extent of tumour resection (EOTR), quality of life, and survival. 12 non-randomised cohort studies matched all selection criteria and were used for qualitative synthesis. Most of the studies included descriptive statistics of patient populations of mixed pathology, and iMRI systems of varying field strengths between 0·15 and 1·5 Tesla. Most studies provided information on EOTR, but did not always mention how iMRI affected the surgical strategy. Only a few studies included information on quality of life or survival for subpopulations with glioblastoma multiforme or high-grade glioma. Several limitations and sources of bias were apparent, which affected the conclusions drawn and might have led to overestimation of the added value of iMRI-guided surgery for resection of glioblastoma multiforme. Based on the available literature, there is, at best, level 2 evidence that iMRI-guided surgery is more effective than conventional neuronavigation-guided surgery in increasing EOTR, enhancing quality of life, or prolonging survival after resection of glioblastoma multiforme.
    The Lancet Oncology 08/2011; 12(11):1062-70. DOI:10.1016/S1470-2045(11)70130-9 · 24.73 Impact Factor