A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells.

Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
Journal of materials chemistry. B, Materials for biology and medicine 01/2013; 2013(7):1002-1009. DOI: 10.1039/C2TB00058J
Source: PubMed

ABSTRACT In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine.

Download full-text


Available from: Shuting Zhao, Apr 06, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure.
    International journal of biological macromolecules 01/2014; DOI:10.1016/j.ijbiomac.2014.01.042 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem-like cells (CSCs) are rare subpopulations of cancer cells that are reported to be responsible for cancer resistance and metastasis associated with conventional cancer therapies. Therefore, effective enrichment/culture of CSCs is of importance to both the understanding and treatment of cancer. However, it usually takes approximately 10 days for the widely used conventional approach to enrich CSCs through the formation of CSC-containing aggregates. Here we report the time can be shortened to 2 days while obtaining prostate CSC-containing aggregates with better quality based on the expression of surface receptor markers, dye exclusion, gene and protein expression, and in vivo tumorigenicity. This is achieved by encapsulating and culturing human prostate cancer cells in the miniaturized 3D liquid core of microcapsules with an alginate hydrogel shell. The miniaturized 3D culture in core-shell microcapsules is an effective strategy for enriching/culturing CSCs in vitro to facilitate cancer research and therapy development.
    Biomaterials 06/2014; DOI:10.1016/j.biomaterials.2014.06.011 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Contemporary systems for in vitro culture of ovarian follicles do not recapitulate the mechanical heterogeneity in mammalian ovary. Here we report microfluidic generation of biomimetic ovarian microtissue for miniaturized three-dimensional (3D) culture of early secondary preantral follicles by using alginate (harder) and collagen (softer) to fabricate the ovarian cortical and medullary tissues, respectively. This biomimetic configuration greatly facilitates follicle development to antral stage. Moreover, it enables in vitro ovulation of cumulus–oocyte complex (COC) from the antral follicles in the absence of luteinizing hormone (LH) and epidermal growth factor (EGF) that are well accepted to be responsible for ovulation in contemporary literature. These data reveal the crucial role of mechanical heterogeneity in the mammalian ovary in regulating follicle development and ovulation. The biomimetic ovarian microtissue and the microfluidic technology developed in this study are valuable for improving in vitro culture of follicles to preserve fertility and for understanding the mechanism of follicle development and ovulation to facilitate the search of cures to infertility due to ovarian disorders.
    Biomaterials 06/2014; 35(19):5122–5128. DOI:10.1016/j.biomaterials.2014.03.028 · 8.31 Impact Factor