A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells.

Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
Journal of materials chemistry. B, Materials for biology and medicine 01/2013; 2013(7):1002-1009. DOI: 10.1039/C2TB00058J
Source: PubMed

ABSTRACT In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation.
    BioResearch open access. 08/2014; 3(4):137-49.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galactosylated alginate (GA)-chitosan oligomer microcapsule was prepared to provide a sufficient mechanical stability, a selective permeability and an appropriate three-dimensional (3D) microenvironment for hepatocytes microencapsulation. The microcapsule has a unique asymmetric membrane structure, with a dense layer located in the inner surface and gradually decreasing toward the outside surface. The stable microcapsule was obtained when GA lower than 50%, while the permeability was increased with increasing of GA. A balance between mechanical stability and permeability was achieved through modulating membrane porosity and thickness. The optimal microcapsule displays a selective permeability allowing efficient transport of human serum albumin while effectively blocking immunoglobulin G. Hepatocytes exhibited high and long term viability (>92%), proliferability, multicellular spheroid morphology, and enhancement of liver-specific functions in the microcapsule wherein galactose moieties present chemical cues to support cell-matrix interactions while the 3D structure of the microcapsule behaves physical cues to facilitate cell-cell interactions.
    Carbohydrate Polymers 11/2014; 112C:502-511. · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Carbohydrate Polymers 02/2015; 116:223-8. · 3.92 Impact Factor