Enhanced Aβ1–40 Production in Endothelial Cells Stimulated with Fibrillar Aβ1–42

Oregon Health & Science University, United States of America
PLoS ONE (Impact Factor: 3.53). 03/2013; 8(3):e58194. DOI: 10.1371/journal.pone.0058194
Source: PubMed

ABSTRACT Amyloid accumulation in the brain of Alzheimer's patients results from altered processing of the 39- to 43-amino acid amyloid β protein (Aβ). The mechanisms for the elevated amyloid (Aβ1-42) are considered to be over-expression of the amyloid precursor protein (APP), enhanced cleavage of APP to Aβ, and decreased clearance of Aβ from the central nervous system (CNS). We report herein studies of Aβ stimulated effects on endothelial cells. We observe an interesting and as yet unprecedented feedback effect involving Aβ1-42 fibril-induced synthesis of APP by Western blot analysis in the endothelial cell line Hep-1. We further observe an increase in the expression of Aβ1-40 by flow cytometry and fluorescence microscopy. This phenomenon is reproducible for cultures grown both in the presence and absence of serum. In the former case, flow cytometry reveals that Aβ1-40 accumulation is less pronounced than under serum-free conditions. Immunofluorescence staining further corroborates these observations. Cellular responses to fibrillar Aβ1-42 treatment involving eNOS upregulation and increased autophagy are also reported.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.
    PLoS ONE 12/2013; 8(12):e82604. DOI:10.1371/journal.pone.0082604 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: No disease-modifying therapies are currently available for Alzheimer's disease (AD), a neurodegenerative disorder that affects more than 36 million people worldwide. Although cardiovascular risk factors such as hypertension and diabetes are increasingly implicated as contributing to the development of AD, the mechanisms whereby these factors influence pathological processes in the AD brain have not been defined. Here we propose, for the first time, vascular activation as a relevant mechanism in AD pathogenesis. We explore this hypothesis in two transgenic AD animal models: AD2576APPSwe (AD2576) and LaFerla 3xTg (3xTgAD) mice using the vascular activation inhibitor sunitinib. Our data show that in both AD animal models, the cerebrovasculature is activated and overexpresses amyloid beta, thrombin, tumor necrosis factor alpha, interleukin-1 beta, interleukin-6, and matrix metalloproteinase 9. Oral administration of sunitinib significantly reduces vascular expression of these proteins. Furthermore, sunitinib improves cognitive function, as assessed by several behavioral paradigms, in both AD animal models. Finally, oxidant injury of brain endothelial cells in culture, resulting in expression of inflammatory proteins, is mitigated by sunitinib. The current data, as well as published studies showing cerebrovascular activation in human AD, support further exploration of vascular-based mechanisms in AD pathogenesis. New thinking about AD pathogenesis and novel, effective treatments are urgently needed. Identification of "vascular activation" as a heretofore unexplored target could stimulate translational investigations in this newly defined area, leading to innovative therapeutic approaches for the treatment of this devastating disease.
    Journal of Alzheimer's disease: JAD 02/2014; 40(3). DOI:10.3233/JAD-2014-132057 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1-40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin-proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis.
    Biochimica et Biophysica Acta 02/2014; 1843(6). DOI:10.1016/j.bbamcr.2014.02.016 · 4.66 Impact Factor

Full-text (3 Sources)

Available from
May 16, 2014