Article

SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.

1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.
Nature (Impact Factor: 42.35). 03/2013; DOI: 10.1038/nature11964
Source: PubMed

ABSTRACT The cryptochrome (CRY) flavoproteins act as blue-light receptors in plants and insects, but perform light-independent functions at the core of the mammalian circadian clock. To drive clock oscillations, mammalian CRYs associate with the Period proteins (PERs) and together inhibit the transcription of their own genes. The SCF(FBXL3) ubiquitin ligase complex controls this negative feedback loop by promoting CRY ubiquitination and degradation. However, the molecular mechanisms of their interactions and the functional role of flavin adenine dinucleotide (FAD) binding in CRYs remain poorly understood. Here we report crystal structures of mammalian CRY2 in its apo, FAD-bound and FBXL3-SKP1-complexed forms. Distinct from other cryptochromes of known structures, mammalian CRY2 binds FAD dynamically with an open cofactor pocket. Notably, the F-box protein FBXL3 captures CRY2 by simultaneously occupying its FAD-binding pocket with a conserved carboxy-terminal tail and burying its PER-binding interface. This novel F-box-protein-substrate bipartite interaction is susceptible to disruption by both FAD and PERs, suggesting a new avenue for pharmacological targeting of the complex and a multifaceted regulatory mechanism of CRY ubiquitination.

0 Followers
 · 
192 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Many aspects of our physiology and behavior, most notably our patterns of sleep and wakefulness, are synchronized with the day–night cycle. These circadian rhythms are generated and maintained by the circadian clock, which consists of positive and negative feedback loops formed by a large number of genes and proteins. The end result is that the rates at which thousands of proteins are produced varies rhythmically over the course of the day–night cycle. It has long been suspected that one of the functions of this circadian clock is to control the timing of cell division. Moreover, since UV radiation can give rise to genetic mutations when cells divide, it is thought that the circadian clock limits the amount of DNA damage that occurs during daytime. Papp, Huber et al. have now confirmed that the circadian clock does indeed participate in the DNA damage response and have revealed that two proteins known to be involved in the circadian clock—Cryptochrome 1 and 2—have a central role in protecting the integrity of the genetic information in the cell. These proteins evolved from light-activated enzymes that repair DNA in bacteria. While mammalian cryptochromes have lost their ability to repair DNA, they still prefer to bind to genetic material that has been damaged by UV radiation. Papp, Huber et al. show that DNA damage triggers cryptochrome 1 to bind to a protein called Hausp, which stabilizes the cryptochrome and prevents it from being broken down. By contrast, DNA damage triggers cryptochrome 2 to bind to a protein called Fbxl3, which has a destabilizing effect on the cryptochrome and promotes its degradation. Since the cryptochromes regulate the activity of BMAL1 and CLOCK, the proteins associated with the two master clock genes, these changes can have a significant effect on the circadian clock of an organism. Further experiments are needed to work out how these proteins influence the activity of BMAL1 and CLOCK, and to investigate the seemingly conflicting roles of the two cryptochromes and the interactions between them. DOI: http://dx.doi.org/10.7554/eLife.04883.002
    eLife Sciences 03/2015; 4. DOI:10.7554/eLife.04883 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods.
    Journal of Proteome Research 03/2015; 14(5). DOI:10.1021/pr501321h · 5.00 Impact Factor