Article

SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.

1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.
Nature (Impact Factor: 42.35). 03/2013; DOI: 10.1038/nature11964
Source: PubMed

ABSTRACT The cryptochrome (CRY) flavoproteins act as blue-light receptors in plants and insects, but perform light-independent functions at the core of the mammalian circadian clock. To drive clock oscillations, mammalian CRYs associate with the Period proteins (PERs) and together inhibit the transcription of their own genes. The SCF(FBXL3) ubiquitin ligase complex controls this negative feedback loop by promoting CRY ubiquitination and degradation. However, the molecular mechanisms of their interactions and the functional role of flavin adenine dinucleotide (FAD) binding in CRYs remain poorly understood. Here we report crystal structures of mammalian CRY2 in its apo, FAD-bound and FBXL3-SKP1-complexed forms. Distinct from other cryptochromes of known structures, mammalian CRY2 binds FAD dynamically with an open cofactor pocket. Notably, the F-box protein FBXL3 captures CRY2 by simultaneously occupying its FAD-binding pocket with a conserved carboxy-terminal tail and burying its PER-binding interface. This novel F-box-protein-substrate bipartite interaction is susceptible to disruption by both FAD and PERs, suggesting a new avenue for pharmacological targeting of the complex and a multifaceted regulatory mechanism of CRY ubiquitination.

0 Bookmarks
 · 
182 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods.
    Journal of Proteome Research 03/2015; DOI:10.1021/pr501321h · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2) evolved from photolyases, bacterial light-activated DNA repair enzymes. In this study, we report that while they have lost DNA repair activity, Cry1/2 adapted to protect genomic integrity by responding to DNA damage through posttranslational modification and coordinating the downstream transcriptional response. We demonstrate that genotoxic stress stimulates Cry1 phosphorylation and its deubiquitination by Herpes virus associated ubiquitin-specific protease (Hausp, a.k.a Usp7), stabilizing Cry1 and shifting circadian clock time. DNA damage also increases Cry2 interaction with Fbxl3, destabilizing Cry2. Thus, genotoxic stress increases the Cry1/Cry2 ratio, suggesting distinct functions for Cry1 and Cry2 following DNA damage. Indeed, the transcriptional response to genotoxic stress is enhanced in Cry1-/- and blunted in Cry2-/- cells. Furthermore, Cry2-/- cells accumulate damaged DNA. These results suggest that Cry1 and Cry2, which evolved from DNA repair enzymes, protect genomic integrity via coordinated transcriptional regulation.
    eLife Sciences 03/2015; 4. DOI:10.7554/eLife.04883 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression, and metabolic disorders. Circadian rhythms in gene expression rely on specific chro-matin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intriguingly, genome topology appears to coordinate cyclic transcription at circadian interactomes, in which circadian genes are in physical contact within the cell nucleus in a time-specific manner. Moreover, the clock machinery shows functional interplays with key metabolic regulators , thereby connecting the circadian epigenome to cellular metabolism. Unraveling the molecular aspects of such interplays is likely to reveal new therapeutic strategies towards the treatment of metabolic disorders.
    02/2015; 1(1). DOI:10.1007/s40610-015-0001-7

Full-text (2 Sources)

Download
30 Downloads
Available from
Jun 23, 2014