Article

Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond.

Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
Trends in cell biology (Impact Factor: 12.31). 03/2013; DOI: 10.1016/j.tcb.2013.02.002
Source: PubMed

ABSTRACT During development and cellular differentiation, tissue- and cell-specific programs mediate mitochondrial biogenesis to meet physiological needs. However, environmental and disease-associated factors can perturb mitochondrial activities, requiring cells to adapt to protect mitochondria and maintain cellular homeostasis. Several mitochondrion-to-nucleus signaling pathways, or retrograde responses, have been described, but the mechanisms by which mitochondrial stress or dysfunction is sensed to coordinate precisely the appropriate response has only recently begun to be understood. Recent studies of the mitochondrial unfolded-protein response (UPR(mt)) indicate that the cell monitors mitochondrial protein import efficiency as an indicator of mitochondrial function. Here, we review how the cell evaluates mitochondrial function and regulates transcriptional induction of the UPR(mt), adapts protein-synthesis rates and activates mitochondrial autophagy to promote mitochondrial function and cell survival during stress.

0 Followers
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat waves occurring at increased frequency as a consequence of global warming jeopardize crop yield safety. One way to encounter this problem is to genetically engineer crop plants toward increased thermotolerance. To identify entry points for genetic engineering, a thorough understanding of how plant cells perceive heat stress and respond to it is required. Using the unicellular green alga Chlamydomonas reinhardtii as a model system to study the fundamental mechanisms of the plant heat stress response has several advantages. Most prominent among them is the suitability of Chlamydomonas for studying stress responses system-wide and in a time-resolved manner under controlled conditions. Here we review current knowledge on how heat is sensed and signaled to trigger temporally and functionally grouped sub-responses termed response elements to prevent damage and to maintain cellular homeostasis in plant cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    The Plant Journal 03/2015; 82(3). DOI:10.1111/tpj.12816 · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and
    The Plant Cell 11/2014; 26(11). DOI:10.1105/tpc.114.130997 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD+/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD+ precursor, was previously shown to boost NAD+ levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD+ levels are a promising treatment strategy for mitochondrial myopathy.
    EMBO Molecular Medicine 04/2014; DOI:10.1002/emmm.201403943 · 8.25 Impact Factor