Topical apigenin improves epidermal permeability barrier homoeostasis in normal murine skin by divergent mechanisms

Dermatology Service, Veterans Affairs Medical Center, and University of California San Francisco, San Francisco, CA, USA
Experimental Dermatology (Impact Factor: 3.76). 03/2013; 22(3):210-215. DOI: 10.1111/exd.12102
Source: PubMed


The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In this study, we first determined whether topical apigenin positively influences permeability barrier homoeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice daily for 9 days. At the end of the treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homoeostasis after tape stripping, although basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were upregulated by apigenin. Finally, both cathelicidin-related peptide and mouse beta-defensin 3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels and impaired antimicrobial defenses, such as atopic dermatitis.

Download full-text


Available from: Richard Sun, Sep 29, 2014
9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 40 null mutations in the filaggrin (FLG) gene are described. It is therefore possible to find two different null mutations in one individual (compound heterozygosity). It has been generally perceived that homozygous and compound heterozygous individuals were genotypically comparable; however, this has not been scientifically investigated. Two different FLG null mutations in the same individual may be in trans position, meaning that each mutation locates to a different allele functionally equivalent to homozygosity, or may be in cis position, meaning that both mutations locate to the same allele functionally equivalent to heterozygosity. To experimentally investigate allelic in cis versus in trans configuration of the two most common filaggrin (FLG) mutations (R501X and 2282del4) in compound heterozygous individuals. Testing for in cis or in trans allele configuration was performed by means of allele-specific PCR amplification and analysis of PCR products by agarose gel electrophoresis. All R501X/2282del4 compound heterozygous samples collected over a 4-year period of routine FLG mutation testing were investigated. In total, 37 samples were tested. All thirty-seven R501X/2282del4 compound heterozygous individuals were found to carry the two mutations in trans position. FLG null mutation compound heterozygous individuals can be considered functionally equivalent to FLG null mutation homozygosity for any of the two mutations.
    Experimental Dermatology 09/2013; 22(9):572-5. DOI:10.1111/exd.12199 · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic and topical glucocorticoids (GC) can cause significant adverse effects not only on the dermis, but also on epidermal structure and function. In epidermis, a striking GC-induced alteration in permeability barrier function occurs that can be attributed to an inhibition of epidermal mitogenesis, differentiation and lipid production. Since prior studies in normal hairless mice demonstrated that topical applications of a flavonoid ingredient found in citrus, hesperidin, improve epidermal barrier function by stimulating epidermal proliferation and differentiation, we assessed here whether its topical applications could prevent GC-induced changes in epidermal function in murine skin, and the basis for such effects. When hairless mice were co-treated topically with GC and 2% hesperidin twice-daily for 9 days, hesperidin co-applications prevented the expected GC-induced impairments of epidermal permeability barrier homeostasis and stratum corneum (SC) acidification. These preventive effects could be attributed to a significant increase in filaggrin expression, enhanced epidermal β-glucocerebrosidase activity and accelerated lamellar bilayer maturation, the last two likely attributable to a hesperidin-induced reduction in stratum corneum pH. Furthermore, co-applications of hesperidin with GC largely prevented the expected GC-induced inhibition of epidermal proliferation. Finally, topical hesperidin increased epidermal glutathione reductase mRNA expression, which could counteract multiple functional negative effects of GC on epidermis. Together, these results show that topical hesperidin prevents GC-induced epidermal side effects by divergent mechanisms.This article is protected by copyright. All rights reserved.
    Experimental Dermatology 06/2014; 23(9). DOI:10.1111/exd.12480 · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson's trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts' apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation.
    European journal of histochemistry: EJH 04/2015; 59(2). DOI:10.4081/ejh.2015.2467 · 2.04 Impact Factor
Show more