Article

The pathogenesis of the antiphospholipid syndrome.

Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, Kogarah, Sydney, NSW 2217, Australia.
New England Journal of Medicine (Impact Factor: 54.42). 03/2013; 368(11):1033-44. DOI: 10.1056/NEJMra1112830
Source: PubMed

Full-text

Available from: Bill Giannakopoulos, Jun 03, 2015
2 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase, which plays pivotal roles in integrating growth signals on a cellular level. To support proliferation and survival under stress, two interacting complexes that harbor mTOR, mTORC1 and mTORC2, promote the transcription of genes involved in carbohydrate metabolism and lipogenesis, enhance protein translation, and inhibit autophagy. Although rapamycin was originally developed as an inhibitor of T cell proliferation for preventing organ transplant rejection, its molecular target, mTOR, has been subsequently identified as a central regulator of metabolic cues that drive lineage specification in the immune system. Owing to oxidative stress, the activation of mTORC1 has emerged as a central pathway for the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. Paradoxically, mTORC1 has also been identified as a mediator of the Warburg effect that allows cell survival under hypoxia. Rapamycin and new classes of mTOR inhibitors are being developed to block not only transplant rejection and autoimmunity but also to treat obesity and various forms of cancer. Through preventing these diseases, personalized mTOR blockade holds promise to extend life span. © 2015 New York Academy of Sciences.
    Annals of the New York Academy of Sciences 04/2015; DOI:10.1111/nyas.12756 · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy complications. β2-glycoprotein I (β2GPI) complexed with phospholipid is recognized as a major target for autoantibodies in APS; however, less than half of the patients with clinical manifestations of APS possess autoantibodies against the complexes. Therefore, the range of autoantigens involved in APS remains unclear. Recently, we found that HLA class II molecules transport misfolded cellular proteins to the cell surface via association with their peptide-binding grooves. Furthermore, IgG heavy chain/HLA class II complexes were specific targets for autoantibodies in rheumatoid arthritis. Here, we demonstrate that intact β2GPI, not peptide, forms a complex with HLA class II molecules. Strikingly, 100 of the 120 APS patients (83.3%) analyzed, including those whose antiphospholipid antibody titers were within normal range, possessed autoantibodies that recognize β2GPI/HLA class II complexes in the absence of phospholipids. In situ association between β2GPI and HLA class II was observed in placental tissues of APS patients but not in healthy controls. Furthermore, autoantibodies against β2GPI/HLA class II complexes mediated complement-dependent cytotoxicity against cells expressing the complexes. These data suggest that β2GPI/HLA class II complexes are a target in APS that might be involved in the pathogenesis. Copyright © 2015 American Society of Hematology.
    Blood 03/2015; DOI:10.1182/blood-2014-08-593624 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood-brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections - including anorexia, malaise, depression, and decreased physical activity - collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders.
    Frontiers in Cellular Neuroscience 01/2015; 9:28. DOI:10.3389/fncel.2015.00028 · 4.18 Impact Factor