Article

Estrogen therapy, independent of timing, improves cardiac structure and function in oophorectomized mRen2.Lewis rats.

3Chemistry Department, Winston-Salem State University, Winston-Salem, NC
Menopause (New York, N.Y.) (Impact Factor: 2.81). 03/2013; DOI: 10.1097/GME.0b013e318280589a
Source: PubMed

ABSTRACT OBJECTIVE: mRen2.Lewis rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodeling, and diastolic impairment after the loss of estrogens. In this same model, depletion of estrogens has marked effects on the cardiac biopterin profile concomitant with suppressed nitric oxide release. With respect to the establishment of overt systolic hypertension after oophorectomy (OVX), we assessed the effects of timing long-term 17β-estradiol (E2) therapy on myocardial function, myocardial structure, and the cardiac nitric oxide system. METHODS: OVX (n = 24) or sham operation (Sham; n = 13) was performed in 4-week-old female mRen2.Lewis rats. After randomization, OVX rats received E2 immediately (OVX + E2-early; n = 7), E2 at 11 weeks of age (OVX + E2-late; n = 8), or no E2 at all (OVX; n = 9). RESULTS: E2-early was associated with lower body weight, less hypertension-related cardiac remodeling, and decreased LV filling pressure compared with OVX rats without E2 supplementation. E2-late similarly attenuated the adverse effects of ovarian hormone loss on tissue Doppler-derived LV filling pressures and perivascular fibrosis, and significantly improved myocardial relaxation or mitral annular velocity (e'). Early and late exposures to E2 decreased dihydrobiopterin, but only E2-late yielded significant increases in cardiac nitrite concentrations. CONCLUSIONS: Although there are some similarities between E2-early and E2-late treatments in relation to preservation of diastolic function and cardiac structure after OVX, the lusitropic potential of E2 is most consistent with late supplementation. The cardioprotective effects of E2-late are independent of blood pressure and may have occurred through regulation of cardiac biopterins and nitric oxide production.

0 Followers
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prevalence of left ventricular diastolic dysfunction (LVDD) sharply increases in women after menopause and may lead to heart failure (HF). While evidence suggests that estrogens protect the premenopausal heart from hypertension and ventricular remodeling, the specific mechanisms involved remain elusive. Moreover, whether there is a protective role of estrogens against cardiovascular disease, and specifically LVDD, continues to be controversial. Clinical and basic science implicates activation of the renin-angiotensin-aldosterone system (RAAS), linked to the loss of ovarian estrogens, in the pathogenesis of postmenopausal diastolic dysfunction. As a consequence of increased tissue angiotensin II (Ang II) and low estrogen, a maladaptive nitric oxide synthase (NOS) system produces reactive oxygen species (ROS) that contribute to female sex-specific hypertensive heart disease. Recent insights from rodent models that mimic the cardiac phenotype of an estrogen insufficient or deficient woman (e.g., premature ovarian failure or postmenopausal), including the ovariectomized congenic mRen2.Lewis female rat, provide evidence that estrogen modulates tissue RAAS and NOS systems and related intracellular signaling pathways, in part via the membrane G protein-coupled estrogen receptor GPR30. Complementing the cardiovascular research in this field, the echocardiographic correlates of LVDD, and inherent limitations to its use in preclinical rodent studies will be briefly presented. Understanding the roles of estrogen and GPR30, their interactions with the local RAAS and NOS systems, and the relationship of each of these to LVDD is necessary to identify new therapeutic targets and alternative treatments for diastolic HF that achieve the cardiovascular benefits of estrogen replacement without its side effects and contraindications.
    AJP Heart and Circulatory Physiology 01/2014; 306(5). DOI:10.1152/ajpheart.00859.2013 · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cardioprotective effects of estrogen are well recognized, but the mechanisms remain poorly understood. Accumulating evidence suggests that the local cardiac renin-angiotensin system (RAS) is involved in the development and progression of cardiac hypertrophy, remodeling, and heart failure. Estrogen attenuates the effects of an activated circulating RAS; however, its role in regulating the cardiac RAS is unclear. Bilateral oophorectomy (OVX; n = 17) or sham-operation (Sham; n = 13) was performed in 4-week-old, female mRen2.Lewis rats. At 11 weeks of age, the rats were randomized and received either 17 β-estradiol (E2, 36 µg/pellet, 60-day release, n = 8) or vehicle (OVX-V, n = 9) for 4 weeks. The rats were sacrificed, and blood and hearts were used to determine protein and/or gene expression of circulating and tissue RAS components. E2 treatment minimized the rise in circulating angiotensin (Ang) II and aldosterone produced by loss of ovarian estrogens. Chronic E2 also attenuated OVX-associated increases in cardiac Ang II, Ang-(1-7) content, chymase gene expression, and mast cell number. Neither OVX nor OVX+E2 altered cardiac expression or activity of renin, angiotensinogen, angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R). E2 treatment in OVX rats significantly decreased gene expression of MMP-9, ACE2, and Ang-(1-7) mas receptor, in comparison to sham-operated and OVX littermates. E2 treatment appears to inhibit upsurges in cardiac Ang II expression in the OVX-mRen2 rat, possibly by reducing chymase-dependent Ang II formation. Further studies are warranted to determine whether an E2-mediated reduction in cardiac chymase directly contributes to this response in OVX rats.
    PLoS ONE 10/2013; 8(10):e76992. DOI:10.1371/journal.pone.0076992 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 02/2015; 459(1). DOI:10.1016/j.bbrc.2015.02.082 · 2.28 Impact Factor