Article

Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Physical Review Letters (Impact Factor: 7.73). 09/2012; 109(11). DOI: 10.1103/PhysRevLett.109.116101

ABSTRACT Evaporation of a sessile droplet is a complex, nonequilibrium phenomenon. Although evaporating droplets upon superhydrophobic surfaces have been known to exhibit distinctive evaporation modes such as a constant contact line (CCL), a constant contact angle (CCA), or both, our fundamental understanding of the effects of surface roughness on the wetting transition remains elusive. We show that the onset time for the CCL-CCA transition and the critical base size at the Cassie-Wenzel transition exhibit remarkable dependence on the surface roughness. Through global interfacial energy analysis we reveal that, when the size of the evaporating droplet becomes comparable to the surface roughness, the line tension at the triple line becomes important in the prediction of the critical base size. Last, we show that both the CCL evaporation mode and the Cassie-Wenzel transition can be effectively inhibited by engineering a surface with hierarchical roughness.

0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The wetting transition from the Cassie-Baxter to the Wenzel state is a phenomenon critically pertinent to the functionality of micro-structured superhydrophobic surfaces. This work focuses on the last stage of the transition, when the liquid-gas interface touches the bottom of the microstructure, which is also known as the "collapse" phenomenon. The process was examined in situ on a submerged surface patterned with cylindrical micropores using confocal microscopy. Both symmetric and asymmetric collapses were observed. The latter significantly shortens the progression of the metastable state prior to the collapse when compared with the former, and hence may affect the lifespan of superhydrophobicity. Further experiments identified that asymmetric collapse were induced by impurities due to prior use of the structure. The problem is thus of broad relevance, since endurance through cycles is a practical requirement for these functional surfaces. Finally, the use of hierarchical structures is proposed as a remedy. The embedded self-cleaning mechanism serves to effectively remove the impurities, so as to avoid the triggering mechanism for asymmetric collapses.
    Langmuir 12/2014; 31(4). DOI:10.1021/la503465q · 4.38 Impact Factor
  • Advanced Materials Interfaces 02/2015; 2(3). DOI:10.1002/admi.201400480
  • [Show abstract] [Hide abstract]
    ABSTRACT: For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.
    Langmuir 01/2015; 31(6). DOI:10.1021/la504971y · 4.38 Impact Factor