Hole mobilities of periodic models of DNA double helices in the nucleosomes at different temperatures

Chemical Physics Letters (Impact Factor: 2.15). 03/2013; 565:128-131. DOI: 10.1016/j.cplett.2013.02.021

ABSTRACT Using the Hartree-Fock crystal orbital method band structures of poly(G-C) and poly(A-T) were calculated (G, etc. means a nucleotide) including water molecules and Na+ ions. Due to the close packing of DNA in the ribosomes the motion of the double helix and the water molecules around it are strongly restricted, therefore the band picture can be used. The mobilities were calculated from the highest filled bands. The hole mobilities increase with decreasing temperatures. They are of the same order of magnitude as those of poly(A) and poly(T). For poly(G) the result is ∼5 times larger than in the poly(G-C) case.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using the ab initio Hartree-Fock crystal orbital method in its linear combination of atomic orbital form, the energy band structure of the four homo-DNA-base stacks and those of poly(adenilic acid), polythymidine, and polycytidine were calculated both in the absence and presence of their surrounding water molecules. For these computations Clementi's double zeta basis set was applied. To facilitate the interpretation of the results, the calculations were supplemented by the calculations of the six narrow bands above the conduction band of poly(guanilic acid) with water. Further, the sugar-phosphate chain as well as the water structures around poly(adenilic acid) and polythymidine, respectively, were computed. Three important features have emerged from these calculations. (1) The nonbase-type or water-type bands in the fundamental gap are all close to the corresponding conduction bands. (2) The very broad conduction band (1.70 eV) of the guanine stack is split off to seven narrow bands in the case of poly(guanilic acid) (both without and with water) showing that in the energy range of the originally guanine-stack-type conduction band, states belonging to the sugar, to PO(4)(-), to Na(+), and to water mix with the guanine-type states. (3) It is apparent that at the homopolynucleotides with water in three cases the valence bands are very similar (polycytidine, because it has a very narrow valence band, does not fall into this category). We have supplemented these calculations by the computation of correlation effects on the band structures of the base stacks by solving the inverse Dyson equation in its diagonal approximation taken for the self-energy the MP2 many body perturbation theory expression. In all cases the too large fundamental gap decreased by 2-3 eV. In most cases the widths of the valence and conduction bands, respectively, decreased (but not in all cases). This unusual behavior is most probably due to the rather large complexity of the systems. From all this emerges the following picture for the charge transport in DNA: There is a possibility in short segments of the DNA helix of a Bloch-type conduction of holes through the nucleotide base stacks of DNA combined with hopping (and in a lesser degree with tunneling). The motivation of this large scale computation was that recently in Zurich (ETH) they have performed high resolution x-ray diffraction experiments on the structure of the nucleosomes. The 8 nucleohistones in them are wrapped around by a DNA superhelix of 147 base pairs in the DNA B form. The most recent investigations have shown that between the DNA superhelix (mostly from its PO(4) (-) groups) there is a charge transfer to the positively charged side chains (first of all arginines and lysines) of the histones at 120 sites of the superhelix. This would cause a hole conduction in DNA and an electronic one in the proteins.
    The Journal of Chemical Physics 04/2008; 128(10):105101. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attempts to infer DNA electron transfer from fluorescence quenching measurements on DNA strands doped with donor and acceptor molecules have spurred intense debate over the question of whether or not this important biomolecule is able to conduct electrical charges. More recently, first electrical transport measurements on micrometre-long DNA 'ropes', and also on large numbers of DNA molecules in films, have indicated that DNA behaves as a good linear conductor. Here we present measurements of electrical transport through individual 10.4-nm-long, double-stranded poly(G)-poly(C) DNA molecules connected to two metal nanoelectrodes, that indicate, by contrast, large-bandgap semiconducting behaviour. We obtain nonlinear current-voltage curves that exhibit a voltage gap at low applied bias. This is observed in air as well as in vacuum down to cryogenic temperatures. The voltage dependence of the differential conductance exhibits a peak structure, which is suggestive of the charge carrier transport being mediated by the molecular energy bands of DNA.
    Nature 03/2000; 403(6770):635-8. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electronic matrix elements for hole transfer between Watson–Crick pairs in desoxyribonucleic acid (DNA) of regular structure, calculated at the Hartree–Fock level, are compared with the corresponding intrastrand and interstrand matrix elements estimated for models comprised of just two nucleobases. The hole transfer matrix element of the GAG trimer duplex is calculated to be larger than that of the GTG duplex. “Through-space” interaction between two guanines in the trimer duplexes is comparable with the coupling through an intervening Watson–Crick pair. The gross features of bridge specificity and directional asymmetry of the electronic matrix elements for hole transfer between purine nucleobases in superstructures of dimer and trimer duplexes have been discussed on the basis of the quantum chemical calculations. These results have also been analyzed with a semiempirical superexchange model for the electronic coupling in DNA duplexes of donor (nuclobases)–acceptor, which incorporates adjacent base–base electronic couplings and empirical energy gaps corrected for solvation effects; this perturbation-theory-based model interpretation allows a theoretical evaluation of experimental observables, i.e., the absolute values of donor–acceptor electronic couplings, their distance dependence, and the reduction factors for the intrastrand hole hopping or trapping rates upon increasing the size of the nucleobases bridge. The quantum chemical results point towards some limitations of the perturbation-theory-based modeling. © 2001 American Institute of Physics.
    The Journal of Chemical Physics 03/2001; 114(13):5614-5620. · 3.12 Impact Factor


Available from
Sep 5, 2014