Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism.

Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2013; DOI: 10.1073/pnas.1302745110
Source: PubMed

ABSTRACT Increasingly diverse types of cargo are being found to be segregated and positioned by ParA-type ATPases. Several minimalistic systems described in bacteria are self-organizing and are known to affect the transport of plasmids, protein machineries, and chromosomal loci. One well-studied model is the F plasmid partition system, SopABC. In vivo, SopA ATPase forms dynamic patterns on the nucleoid in the presence of the ATPase stimulator, SopB, which binds to the sopC site on the plasmid, demarcating it as the cargo. To understand the relationship between nucleoid patterning and plasmid transport, we established a cell-free system to study plasmid partition reactions in a DNA-carpeted flowcell. We observed depletion zones of the partition ATPase on the DNA carpet surrounding partition complexes. The findings favor a diffusion-ratchet model for plasmid motion whereby partition complexes create an ATPase concentration gradient and then climb up this gradient toward higher concentrations of the ATPase. Here, we report on the dynamic properties of the Sop system on a DNA-carpet substrate, which further support the proposed diffusion-ratchet mechanism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Conjugative plasmids are typically locked in intergenomic and sexual conflicts with co-resident rivals, whose translocation they block using fertility inhibition factors (FINs). We describe here the first crystal structure of an enigmatic FIN Osa deployed by the proteobacterial plasmid pSa. Osa contains a catalytically active version of the ParB/Sulfiredoxin fold with both ATPase and DNase activity, the latter being regulated by an ATP-dependent switch. Using the Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS), a relative of the conjugative T4SS, we demonstrate that catalytically active Osa blocks T-DNA transfer into plants. With a partially reconstituted T4SS in vitro, we show that Osa degrades T-DNA in the T-DNA- VirD2 complex before its translocation. Further, we present evidence for conservation and interplay between ATPase and DNase activities throughout the ParB/Sulfiredoxin fold, using other members of the family, namely P1 ParB and RK2 KorB, which have general functional implications across diverse biological contexts.
    Nature Communications 10/2014; 5. DOI:10.1038/ncomms6322 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.
    11/2014; 2(6). DOI:10.1128/microbiolspec.PLAS-0023-2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low copy number plasmids in bacteria require segregation for stable inheritance through cell division. This is often achieved by a parABC locus, comprising an ATPase ParA, DNA-binding protein ParB and a parC region, encoding ParB-binding sites. These minimal components space plasmids equally over the nucleoid, yet the underlying mechanism is not understood. Here we investigate a model where ParA-ATP can dynamically associate to the nucleoid and is hydrolyzed by plasmid-associated ParB, thereby creating nucleoid-bound, self-organizing ParA concentration gradients. We show mathematically that differences between competing ParA concentrations on either side of a plasmid can specify regular plasmid positioning. Such positioning can be achieved regardless of the exact mechanism of plasmid movement, including plasmid diffusion with ParA-mediated immobilization or directed plasmid motion induced by ParB/parC-stimulated ParA structure disassembly. However, we find experimentally that parABC from Escherichia coli plasmid pB171 increases plasmid mobility, inconsistent with diffusion/immobilization. Instead our observations favor directed plasmid motion. Our model predicts less oscillatory ParA dynamics than previously believed, a prediction we verify experimentally. We also show that ParA localization and plasmid positioning depend on the underlying nucleoid morphology, indicating that the chromosomal architecture constrains ParA structure formation. Our directed motion model unifies previously contradictory models for plasmid segregation and provides a robust mechanistic basis for self-organized plasmid spacing that may be widely applicable.
    PLoS Computational Biology 12/2014; 10(12):e1004009. DOI:10.1371/journal.pcbi.1004009 · 4.87 Impact Factor

Full-text (3 Sources)

Available from
May 22, 2014
Available from