Using Routine Surveillance Data to Estimate the Epidemic Potential of Emerging Zoonoses: Application to the Emergence of US Swine Origin Influenza A H3N2v Virus

MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
PLoS Medicine (Impact Factor: 14.43). 03/2013; 10(3):e1001399. DOI: 10.1371/journal.pmed.1001399
Source: PubMed


Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number (average number of persons infected by a human case). However, until now, estimating required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations.
Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases () and among the subset of the first detected cases in each cluster (). If detection of a case does not affect detection of other cases from the same cluster, we find that can be estimated by 1-; otherwise can be estimated by 1- when the case detection rate is low. In more general cases, bounds on can still be derived.
We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

Download full-text


Available from: David L Swerdlow, Oct 05, 2015
20 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human Nipah outbreaks recur in a specific region and time of year in Bangladesh. Fruit bats are the reservoir host for Nipah virus. We identified 23 introductions of Nipah virus into human populations in central and northwestern Bangladesh from 2001 through 2007. Ten introductions affected multiple persons (median 10). Illness onset occurred from December through May but not every year. We identified 122 cases of human Nipah infection. The mean age of case-patients was 27 years; 87 (71%) died. In 62 (51%) Nipah virus-infected patients, illness developed 5-15 days after close contact with another Nipah case-patient. Nine (7%) Nipah case-patients transmitted virus to others. Nipah case-patients who had difficulty breathing were more likely than those without respiratory difficulty to transmit Nipah (12% vs. 0%, p = 0.03). Although a small minority of infected patients transmit Nipah virus, more than half of identified cases result from person-to-person transmission. Interventions to prevent virus transmission from bats to humans and from person to person are needed.
    Emerging Infectious Diseases 08/2009; 15(8):1229-35. DOI:10.3201/eid1508.081237 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During July-December 2011, a variant virus, influenza A(H3N2)v, caused 12 human cases of influenza. The virus contained genes originating from swine, avian, and human viruses, including the M gene from influenza A(H1N1)pdm09 virus. Influenza A(H3N2)v viruses were antigenically distinct from seasonal influenza viruses and similar to proposed vaccine virus A/Minnesota/11/2010.
    Emerging Infectious Diseases 05/2012; 18(5):834-7. DOI:10.3201/eid1805.111922 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary The origin of seasonality in influenza transmission is both of palpable public health importance and basic scientific interest. Here, we present statistical analyses and a mathematical model of epidemic influenza transmission that provide strong epidemiological evidence for the hypothesis that absolute humidity (AH) drives seasonal variations of influenza transmission in temperate regions. We show that the onset of individual wintertime influenza epidemics is associated with anomalously low AH conditions throughout the United States. In addition, we use AH to modulate the basic reproductive number of influenza within a mathematical model of influenza transmission and compare these simulations with observed excess pneumonia and influenza mortality. These simulations capture key details of the observed seasonal cycle of influenza throughout the US. The results indicate that AH affects both the seasonality of influenza incidence and the timing of individual wintertime influenza outbreaks in temperate regions. The association of anomalously low AH conditions with the onset of wintertime influenza outbreaks suggests that skillful, short-term probabilistic forecasts of epidemic influenza could be developed.
    PLoS Biology 02/2010; 8(2):e1000316. DOI:10.1371/journal.pbio.1000316 · 9.34 Impact Factor
Show more