Evidence for a common mechanism of SIRT1 regulation by allosteric activators.

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Science (Impact Factor: 31.48). 03/2013; 339(6124):1216-9. DOI: 10.1126/science.1231097
Source: PubMed

ABSTRACT A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol has emerged in recent years as a compound conferring strong protection against metabolic, cardiovascular and other age-related complications, including neurodegeneration and cancer. This has generated the notion that resveratrol treatment acts as a calorie-restriction mimetic, based on the many overlapping health benefits observed upon both interventions in diverse organisms, including yeast, worms, flies and rodents. Though studied for over a decade, the molecular mechanisms governing the therapeutic properties of resveratrol still remain elusive. Elucidating how resveratrol exerts its effects would not only provide new insights in its fundamental biological actions but also new avenues for the design and development of more potent drugs to efficiently manage metabolic disorders. In this review we will cover the most recent advances in the field, with special focus on the metabolic actions of resveratrol and the potential role of SIRT1 and AMPK. This article is part of a Special Issue entitled: Resveratol: Challenges in translating pre-clincial findigns to iproved patient outcomes, guest edited by J. Dyck and P. Schrauwen.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 10/2014; · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB), a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM), alanine (0.5 mM), valine (0.5 mM), EX527 (SIRT1 inhibitor, 25 μM), and Compound C (AMPK inhibitor, 25 μM) alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD(+), SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.
    Journal of nutrition and metabolism 01/2014; 2014:239750.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuin 1 is a nicotinamide adenine dinucleotide-dependent protein deacetylase which regulates longevity and improves metabolism. Activation of Sirtuin 1 confers beneficial effects in models of neurodegenerative diseases. We and others have provided convincing evidence that overexpression of Sirtuin 1 plays a neuroprotective role in mouse models of Huntington's disease. In this study, we report that SRT2104, a small molecule Sirtuin 1 activator, penetrated the blood-brain barrier, attenuated brain atrophy, improved motor function, and extended survival in a mouse model of Huntington's disease. These findings imply a novel therapeutic strategy for Huntington's disease by targeting Sirtuin 1.
    Annals of clinical and translational neurology. 12/2014; 1(12):1047-52.


Available from
May 17, 2014