Article

Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Science (Impact Factor: 31.48). 03/2013; 339(6124):1216-9. DOI: 10.1126/science.1231097
Source: PubMed

ABSTRACT A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.

2 Followers
 · 
428 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proanthocyanidins (PAs), a flavonoid sub-class, alter the expression of clock genes in the liver of lean and obese rats. The present study aimed to determine whether PAs could modulate the 24-hour rhythmicity of clock gene expression and to identify the molecular mechanism through which PAs could adjust the clock system in HepG2 cells. The 24-hour rhythmicity of core clock (CLOCK and BMAL1) and clock-controlled (CRY, PER2, RORα, REV-ERBα) gene expression indicated that a grape seed proanthocyanidin extract (GSPE) shifted the acrophase of nearly all of them, but BMAL1 appeared as the most sensitive gene to GSPE. Specifically, GSPE increased BMAL1 expression strongly and very quickly. This effect was also reproduced by melatonin. The overexpression of BMAL1 was melatonin receptor 1 (MT1) dependent for melatonin but MT1 independent for GSPE. However, GSPE increased the transcriptional activity of RORα, suggesting that this nuclear receptor could be responsible for the modulation of BMAL1 by GSPE.
    Journal of Functional Foods 03/2015; 13. DOI:10.1016/j.jff.2015.01.017 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NAD(+)-dependent protein deacetylase SIRT1 regulates energy metabolism, responses to stress, and aging by deacetylating many different proteins, including histones and transcription factors. The mechanisms controlling SIRT1 enzymatic activity are complex and incompletely characterized, yet essential for understanding how to develop therapeutics that target SIRT1. Here, we demonstrate that the N-terminal domain of SIRT1 (NTERM) can trans-activate deacetylation activity by physically interacting with endogenous SIRT1 and promoting its association with the deacetylation substrate NF-κB p65. Two motifs within the NTERM domain contribute to activation of SIRT1-dependent activities, and expression of one of these motifs in mice is sufficient to lower fasting glucose levels and improve glucose tolerance in a manner similar to overexpression of SIRT1. Our results provide insights into the regulation of SIRT1 activity and a rationale for pharmacological control of SIRT1-dependent activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.
    02/2015; 3(1):283-303. DOI:10.1146/annurev-animal-022114-110829