Killing by bactericidal antibiotics does not depend on reactive oxygen species.

Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 021156, USA.
Science (Impact Factor: 31.48). 03/2013; 339(6124):1213-6. DOI: 10.1126/science.1232688
Source: PubMed

ABSTRACT Bactericidal antibiotics kill by modulating their respective targets. This traditional view has been challenged by studies that propose an alternative, unified mechanism of killing, whereby toxic reactive oxygen species (ROS) are produced in the presence of antibiotics. We found no correlation between an individual cell's probability of survival in the presence of antibiotic and its level of ROS. An ROS quencher, thiourea, protected cells from antibiotics present at low concentrations, but the effect was observed under anaerobic conditions as well. There was essentially no difference in survival of bacteria treated with various antibiotics under aerobic or anaerobic conditions. This suggests that ROS do not play a role in killing of bacterial pathogens by antibiotics.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The electrical potential difference (delta psi) across the membrane of Escherichia coli was measured by the distribution of lipid-soluble cations and correlated with resistance to dihydrostreptomycin, where resistance is presumed due to reduced uptake of the drug. A good correlation between the two measured parameters was found under all conditions tested, which included effects of several mutations, inhibitors, changes in pH, and osmolarity. The most dramatic changes were seen when pH was varied; in wild-type strains resistance increased more than 100-fold, and delta psi fell by 70 mV when pH was reduced from 8.5 to 5.5. These results were interpreted as support for a model in which the uptake of the polycationic aminoglycosides is electrogenic and therefore driven by delta psi. The factor common to mutations and conditions which increase resistance was a reduction in delta psi. A simple model was developed which relates the minimal inhibitory concentration to the rate of aminoglycoside uptake and the rate of growth.
    Antimicrobial Agents and Chemotherapy 12/1981; 20(6):803-8. · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes the biochemistry of the enzymes and the bioenergetics of the processes, but also the genetics of the genes encoding the energy transducing proteins. The progress in the area of carbohydrate transport and metabolism is presented first. Sugar translocation involving ATP-driven transport, ion-linked cotransport, heterologous exchange and group translocation are discussed. The coupling of precursor uptake to product product excretion and the linkage of antiport mechanisms to the deiminase pathways of lactic acid bacteria is dealt with in the second section. The third topic relates to metabolic energy conservation by chemiosmotic processes. There is increasing evidence that precursor/product exchange in combination with precursor decarboxylation allows bacteria to generate additional metabolic energy. In the final section transport of nutrients and ions as well as mechanisms to excrete undesirable (toxic) compounds from the cells are discussed.
    FEMS Microbiology Reviews 10/1993; 12(1-3):125-47. · 13.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The electron-transport chains of Escherichia coli are composed of many different dehydrogenases and terminal reductases (or oxidases) which are linked by quinones (ubiquinone, menaquinone and demethylmenaquinone). Quinol:cytochrome c oxido-reductase ('bc1 complex') is not present. For various electron acceptors (O2, nitrate) and donors (formate, H2, NADH, glycerol-3-P) isoenzymes are present. The enzymes show great variability in membrane topology and energy conservation. Energy is conserved by conformational proton pumps, or by arrangement of substrate sites on opposite sides of the membrane resulting in charge separation. Depending on the enzymes and isoenzymes used, the H+/e- ratios are between 0 and 4 H+/e- for the overall chain. The expression of the terminal reductases is regulated by electron acceptors. O2 is the preferred electron acceptor and represses the terminal reductases of anaerobic respiration. In anaerobic respiration, nitrate represses other terminal reductases, such as fumarate or DMSO reductases. Energy conservation is maximal with O2 and lowest with fumarate. By this regulation pathways with high ATP or growth yields are favoured. The expression of the dehydrogenases is regulated by the electron acceptors, too. In aerobic growth, non-coupling dehydrogenases are expressed and used preferentially, whereas in fumarate or DMSO respiration coupling dehydrogenases are essential. Coupling and non-coupling isoenzymes are expressed correspondingly. Thus the rationale for expression of the dehydrogenases is not maximal energy yield, but could be maximal flux or growth rates. Nitrate regulation is effected by two-component signal transfer systems with membraneous nitrate/nitrite sensors (NarX, NarQ) and cytoplasmic response regulators (NarL, NarP) which communicate by protein phosphorylation. O2 regulates by a two-component regulatory system consisting of a membraneous sensor (ArcB) and a response regulator (ArcA). ArcA is the major regulator of aerobic metabolism and represses the genes of aerobic metabolism under anaerobic conditions. FNR is a cytoplasmic O2 responsive regulator with a sensory and a regulatory DNA-binding domain. FNR is the regulator of genes required for anaerobic respiration and related pathways. The binding sites of NarL, NarP, ArcA and FNR are characterized for various promoters. Most of the genes are regulated by more than one of the regulators, which can act in any combination and in a positive or negative mode. By this the hierarchical expression of the genes in response to the electron acceptors is achieved. FNR is located in the cytoplasm and contains a 4Fe4S cluster in the sensory domain. The regulatory concentrations of O2 are 1-5 mbar. Under these conditions O2 diffuses to the cytoplasm and is able to react directly with FNR without involvement of other specific enzymes or protein mediators. By oxidation of the FeS cluster, FNR is converted to the inactive state in a reversible process. Reductive activation could be achieved by cellular reductants in the absence of O2. In addition, O2 may cause destruction and loss of the FeS cluster. It is not known whether this process is required for regulation of FNR function.
    Biochimica et Biophysica Acta 08/1997; 1320(3):217-34. · 4.66 Impact Factor