RNAi–Based Functional Profiling of Loci from Blood Lipid Genome-Wide Association Studies Identifies Genes with Cholesterol-Regulatory Function

University of Oxford, United Kingdom
PLoS Genetics (Impact Factor: 7.53). 02/2013; 9(2):e1003338. DOI: 10.1371/journal.pgen.1003338
Source: PubMed


Genome-wide association studies (GWAS) are powerful tools to unravel genomic loci associated with common traits and complex human disease. However, GWAS only rarely reveal information on the exact genetic elements and pathogenic events underlying an association. In order to extract functional information from genomic data, strategies for systematic follow-up studies on a phenotypic level are required. Here we address these limitations by applying RNA interference (RNAi) to analyze 133 candidate genes within 56 loci identified by GWAS as associated with blood lipid levels, coronary artery disease, and/or myocardial infarction for a function in regulating cholesterol levels in cells. Knockdown of a surprisingly high number (41%) of trait-associated genes affected low-density lipoprotein (LDL) internalization and/or cellular levels of free cholesterol. Our data further show that individual GWAS loci may contain more than one gene with cholesterol-regulatory functions. Using a set of secondary assays we demonstrate for a number of genes without previously known lipid-regulatory roles (e.g. CXCL12, FAM174A, PAFAH1B1, SEZ6L, TBL2, WDR12) that knockdown correlates with altered LDL-receptor levels and/or that overexpression as GFP-tagged fusion proteins inversely modifies cellular cholesterol levels. By providing strong evidence for disease-relevant functions of lipid trait-associated genes, our study demonstrates that quantitative, cell-based RNAi is a scalable strategy for a systematic, unbiased detection of functional effectors within GWAS loci.

32 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperlipidemia is an important risk factor for cardiovascular disease globally, but there is still much mystery surrounding the topic of lipid regulation. Many studies have attempted to assess the underlying genetic basis of low-density lipoprotein (LDL) metabolism. Recently, multiple genome-wide association studies identified genes that strongly associate with plasma lipid concentration and cardiovascular disease. Compelling evidence linking the SORT1 gene to both LDL cholesterol (LDL-C) levels and the risk of coronary artery disease emerged from the data, prompting the search for the molecules and mechanisms responsible for this association. Three recent studies explored this relation through sortilin, the gene product of SORT1, and an intracellular trafficking molecule. Careful, hypothesis-driven experimental designs elucidated the potential mechanisms of sortilin's role in LDL-C metabolism. However, each study's conclusions differed in the details of SORT1's association to LDL-C and the subcellular mechanisms at work. Nevertheless, these 3 studies demonstrate how a complex disease such as hyperlipidemia can be evaluated from the scope of the genome down through the level of cellular regulation. Their findings serve as a platform for further study of LDL-C metabolism and hyperlipidemia while also providing lessons on how to better study other complex diseases.
    Cardiology in review 03/2014; 22(2):91-6. DOI:10.1097/CRD.0000000000000008 · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
    International Journal of Oncology 06/2013; 43(2). DOI:10.3892/ijo.2013.1985 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pescadillo (PES) is involved in diverse cellular processes such as embryonic development, ribosomal biogenesis, cell proliferation, and gene transcription in yeast and metazoans. In this study, we characterized cellular functions of plant PES in Nicotiana benthamiana, Arabidopsis, and tobacco BY-2 cells. A GFP fusion protein of PES is predominantly localized in the nucleolus, where its localization requires the N-terminal domain of PES. Silencing of plant PES led to growth arrest and acute cell death. PES interacts with plant homologs of BOP1 and WDR12 in the nucleolus, which are also nucleolar proteins involved in ribosome biogenesis of yeast and mammals. PES, BOP1, and WDR12 cofractionated with ribosome subunits. Depletion of any of these proteins led to defective biogenesis of the 60S ribosome large subunits and disruption of nucleolar morphology. PES-deficient plant cells also exhibited delayed maturation of 25S ribosomal RNA and suppressed global translation. During mitosis in tobacco BY-2 cells, PES is associated with the mitotic microtubules, including spindles and phragmoplasts, and PES deficiency disrupted spindle organization and chromosome arrangement. Collectively, these results suggest that plant PES has an essential role in cell growth and survival through its regulation of ribosome biogenesis and mitotic progression. This article is protected by copyright. All rights reserved.
    The Plant Journal 08/2013; 76(3). DOI:10.1111/tpj.12302 · 5.97 Impact Factor
Show more


32 Reads
Available from