Article

Cognitive impairment in MS Impact of white matter integrity, gray matter volume, and lesions

From the Departments of Radiology (H.E.H., M.D.S., A.V., H.V., F.B.), Anatomy and Neurosciences (H.E.H., J.J.G.G.), Physics and Medical Technology (P.J.W.P.), Neurology (B.M.J.U., C.H.P.), and Epidemiology and Biostatistics (B.M.J.U.), VU University Medical Center, Amsterdam, the Netherlands.
Neurology (Impact Factor: 8.3). 03/2013; 80(11). DOI: 10.1212/WNL.0b013e31828726cc
Source: PubMed

ABSTRACT OBJECTIVE: To investigate whether extent and severity of white matter (WM) damage, as measured with diffusion tensor imaging (DTI), can distinguish cognitively preserved (CP) from cognitively impaired (CI) multiple sclerosis (MS) patients. METHODS: Conventional MRI and DTI data were acquired from 55 MS patients (35 CP, 20 CI) and 30 healthy controls (HC). Voxelwise analyses were used to investigate fractional anisotropy (FA), mean diffusivity, radial diffusivity, and axial diffusivity of a WM skeleton. Regional gray matter volume was quantified and lesion probability maps were generated. RESULTS: Compared to HCs, decreased FA was found in 49% of the investigated WM skeleton in CP patients and in 76% of the investigated WM in CI patients. Several brain areas that showed reduced FA in both patient groups were significantly worse in CI patients, i.e, corpus callosum, superior and inferior longitudinal fasciculus, corticospinal tracts, forceps major, cingulum, and fornices. In CI patients, WM integrity damage was additionally seen in cortical brain areas, thalamus, uncinate fasciculus, brainstem, and cerebellum. These findings were independent of lesion location and regional gray matter volume, since no differences were found between the groups. CONCLUSION: CI patients diverged from CP patients only on DTI metrics. WM integrity changes were found in areas that are highly relevant for cognition in the CI patients but not in the CP patients. These WM changes are therefore thought to be related to the cognitive deficits and suggest that DTI might be a powerful tool when monitoring cognitive impairment in MS.

1 Follower
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with multiple sclerosis (MS), grey matter damage is widespread and might underlie many of the clinical symptoms, especially cognitive impairment. This relation between grey matter damage and cognitive impairment has been lent support by findings from clinical and MRI studies. However, many aspects of cognitive impairment in patients with MS still need to be characterised. Standardised neuropsychological tests that are easy to administer and sensitive to disease-related abnormalities are needed to gain a better understanding of the factors affecting cognitive performance in patients with MS than exists at present. Imaging measures of the grey matter are necessary, but not sufficient to fully characterise cognitive decline in MS. Imaging measures of both lesioned and normal-appearing white matter lend support to the hypothesis of the existence of an underlying disconnection syndrome that causes clinical symptoms to trigger. Findings on cortical reorganisation support the contribution of brain plasticity and cognitive reserve in limiting cognitive deficits. The development of clinical and imaging biomarkers that can monitor disease development and treatment response is crucial to allow early identification of patients with MS who are at risk of cognitive impairment. Copyright © 2015 Elsevier Ltd. All rights reserved.
    The Lancet Neurology 02/2015; 14(3). DOI:10.1016/S1474-4422(14)70250-9 · 21.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropsychological deficits constitute enduring trait-like features in bipolar disorder (BD), and persist in euthymia. White matter (WM) abnormalities are one of the most consistently reported findings in neuroimaging studies of BD. We hypothesized that neuropsychological performances could correlate with WM integrity in a sample of bipolar patients in core WM tracts. Seventy-eight patients affected by BD were evaluated for verbal memory, working memory, psychomotor coordination, executive functions, attention and information processing, and verbal fluency through the Brief Assessment of Cognition in Schizophrenia. White matter integrity was evaluated using DTI and tract-based spatial statistics with threshold free cluster enhancement (p>0.949). We observed that cognitive performances in attention and information processing, working memory, executive functions and psychomotor coordination were associated with DTI measures of WM integrity in several association fibres: inferior and superior longitudinal fasciculus, inferior fronto-occipital fasciculus, cingulum bundle, corpus callosum, and corona radiata. The drug treatments administered during the course of the illness could have influenced DTI measures and neurocognitive function. Other limitations include issues such as generalizability due to the lack of a control group, possible undetected past comorbidities, population stratification, and the presence of a 28% of patients which previously experienced delusions. This is the first study to use a validated cognitive battery to investigate the principal cognitive domains in BD. Our data confirm the importance of WM integrity as a neurobiological underpinning of cognitive deficits. Copyright © 2014 Elsevier B.V. All rights reserved.
    Journal of Affective Disorders 12/2014; 174C:342-352. DOI:10.1016/j.jad.2014.12.030 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates whether changes in functional connectivity, diffusivity, and volume of the thalamus can explain different severities of cognitive impairment in multiple sclerosis (MS). An inception cohort of 157 patients with MS (104 women, mean age 41 years), 6 years postdiagnosis, was divided into 3 groups: cognitively preserved (CP, n = 108), mildly cognitively impaired (MCI, n = 22), and more severely cognitively impaired (SCI, n = 27). These groups were matched to 47 healthy controls (HC, 28 women, mean age 41 years). Thalamic volume, thalamic skeleton diffusivity (fractional anisotropy [FA] and mean diffusivity [MD]), and thalamic resting-state functional connectivity (FC) were compared between groups. Thalamic volume was significantly lower in all patient groups compared to controls, with lowest volumes in patients with SCI, and no difference between CP and MCI. Thalamic skeleton FA was decreased in SCI compared to HC only; MD was increased in SCI compared to all other groups. Thalamic FC was increased in SCI with a total of 15 regions, mainly sensorimotor, frontal, and occipital parts of the brain. Thalamic volume, FC, and MD remained independent predictors in a linear regression model (R(2) = 0.46), together with male sex and a lower level of education. Lesion and whole-brain volumes were not significant predictors. These findings indicate that thalamic changes in structure and function are highly informative regarding overall cognitive performance in MS. Increased thalamic FC only became apparent in SCI, possibly as a sign of maladaption. © 2015 American Academy of Neurology.
    Neurology 01/2015; DOI:10.1212/WNL.0000000000001285 · 8.30 Impact Factor