Article

Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M et al. Behavioral and Structural Responses to Chronic Cocaine Require a Feedforward Loop Involving DeltaFosB and Calcium/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell. J Neurosci 33: 4295-4307

Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, 10029, Departments of Neuroscience and Psychology, Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota 55455, Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037 Depressive Disorders Program, Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada, H4H 1R3, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 03/2013; 33(10):4295-4307. DOI: 10.1523/JNEUROSCI.5192-12.2013
Source: PubMed

ABSTRACT The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.

0 Followers
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic modifications in nucleus accumbens (NAc) medium spiny neurons (MSNs) play a key role in adaptive and pathological reward-dependent learning, including maladaptive responses involved in drug addiction. NAc MSNs participate in two parallel circuits, direct and indirect pathways that subserve distinct behavioral functions. Modification of NAc MSN synapses may occur in part via changes in the transcriptional potential of certain genes in a cell type-specific manner. The transcription factor FosB is one of the key proteins implicated in the gene expression changes in NAc caused by drugs of abuse, yet its effects on synaptic function in NAc MSNs are unknown. Here, we demonstrate that overexpression of FosB decreased excitatory synaptic strength and likely increased silent synapses onto D1 dopamine receptor-expressing direct pathway MSNs in both the NAc shell and core. In contrast, FosB likely decreased silent synapses onto NAc shell, but not core, D2 dopamine receptor-expressing indirect pathway MSNs. Analysis of NAc MSN dendritic spine morphology revealed that FosB increased the density of immature spines in D1 direct but not D2 indirect pathway MSNs. To determine the behavioral consequences of cell type-specific actions of FosB, we selectively overexpressed FosB in D1 direct or D2 indirect MSNs in NAc in vivo and found that direct (but not indirect) pathway MSN expression enhances behavioral responses to cocaine. These results reveal that FosB in NAc differentially modulates synaptic properties and reward-related behaviors in a cell type- and subregion-specific fashion.
    Proceedings of the National Academy of Sciences 01/2013; 110(5). DOI:10.1073/pnas.1221742110 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
    Methods 04/2013; 61(3). DOI:10.1016/j.ymeth.2013.04.008 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues, including brain. This has prompted recent research aimed at characterizing the influence of epigenetic regulatory events in mediating the lasting effects of drugs of abuse on the brain in animal models of drug addiction. This review provides a progress report of this still early work in the field. As will be seen, there is robust evidence that repeated exposure to drugs of abuse induces changes within the brain's reward regions in three major modes of epigenetic regulation-histone modifications such as acetylation and methylation, DNA methylation, and non-coding RNAs. In several instances, it has been possible to demonstrate directly the contribution of such epigenetic changes to addiction-related behavioral abnormalities. Studies of epigenetic mechanisms of addiction are also providing an unprecedented view of the range of genes and non-genic regions that are affected by repeated drug exposure and the precise molecular basis of that regulation. Work is now needed to validate key aspects of this work in human addiction and evaluate the possibility of mining this information to develop new diagnostic tests and more effective treatments for addiction syndromes.
    Neuropharmacology 04/2013; 23(4). DOI:10.1016/j.neuropharm.2013.04.004 · 4.82 Impact Factor
Show more