Liquid crystals of carbon nanotubes and graphene.

CNRS, Université de Bordeaux, , Centre de Recherche Paul Pascal (CRPP), UPR 8641, 33600 Pessac, France.
Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences (Impact Factor: 2.89). 04/2013; 371(1988):20120499. DOI: 10.1098/rsta.2012.0499
Source: PubMed

ABSTRACT Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 2H NMR spectroscopy was used to characterize changes in the liquid crystal (LC) phase behavior and orientational order resulting from the dispersion of graphene nanoplatelets within the nematic 4-cyano-4′-n-pentyl-biphenyl (5CB) liquid crystal. The graphene/5CB composites revealed a decreased isotropic to nematic phase transition temperature (TIN) and a reduction in LC orientational order, with increasing graphene volume fraction. In contrast, the graphene/benzene/5CB composites revealed both an increased TIN and an increase in the LC orientational order with graphene addition. These changes result from anisotropic surface interactions between the graphene nanoplatelets and LC, and are discussed in terms of the mean-field theory for nanoparticle doped LCs.
    Chemical Physics Letters 01/2014; 592:7–13. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Besides nanostructured materials, individual particles are key elements for nanosciences. The structuring properties of liquid crystals (LCs) are appealing to assemble them, to organize them on substrates or to design functional composites. We present here an overview on particles/LC systems, the size of the dispersed particles being larger than the typical LC length. We first summarize the large number of advances made these last 10 years concerning microparticles assemblies. We then discuss the evolution of the relevant interactions between nanoparticles (NPs) dispersed in LCs when their size decreases from micrometers to nanometers. Various NPs assemblies obtained, either in LC bulk, at interfaces or within LC distorted areas or topological defects are then reported and discussed. Finally, we consider the recent possibilities to use NPs as building elements of complex fluids. We discuss accordingly the LC phases, which can be obtained with pure inorganic NPs in concentrated solution, as well as the self-assemblies which can be obtained when NPs are covered by organic mesogenic ligands.
    Liquid Crystals Reviews. 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ opt/σ dc = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I on/I off ratios from 10-19 800 and electron mobility values μ e = 0.3-78.8 cm(2) (V-s)(-1), hole mobility values μ h = 0.4-287 cm(2) (V-s)(-1). High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ dc/σ opt values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.
    Nanotechnology 04/2014; 25(17):175201. · 3.84 Impact Factor


Available from
May 27, 2014