Article

Therapeutic Efficacy of Antibodies Lacking FcγR against Lethal Dengue Virus Infection Is Due to Neutralizing Potency and Blocking of Enhancing Antibodies

Mount Sinai School of Medicine, United States of America
PLoS Pathogens (Impact Factor: 8.06). 02/2013; 9(2):e1003157. DOI: 10.1371/journal.ppat.1003157
Source: PubMed

ABSTRACT Author Summary
The four dengue virus serotypes (DENV1-4) cause the most prevalent mosquito-transmitted viral disease globally, infecting 50–100 million people annually in tropical and sub-tropical regions worldwide, yet no vaccine or therapy has been licensed to prevent or treat dengue. The greatest risk factor for severe dengue disease is a previous infection with a different serotype, which is thought to be due in part to a phenomenon known as antibody-dependent enhancement (ADE) whereby anti-DENV antibodies from a prior infection augment DENV infection of target Fcg receptor (FcgR)-expressing cells. We previously developed a mouse model that demonstrates antibody-enhanced lethal DENV disease and showed that genetically-modified antibodies incapable of interacting with the FcgR eliminate ADE in vitro and in vivo. In this study, we studied a larger panel of modified MAbs that recognize different regions of the DENV envelope protein. While all modified MAbs acted therapeutically to prevent a lethal, virus-only DENV infection, only certain MAbs effectively protected mice following an antibody-enhanced lethal infection. We determined that therapeutically effective MAbs following an ADE infection worked by competing for binding of enhancing antibodies on the DENV virion. Based on this, we designed an in vitro suppression-of-enhancement assay that predicted the ability of modified MAbs to act therapeutically in vivo.

1 Follower
 · 
153 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The humoral response contributes to the protection against viral pathogens. Although antibodies have the potential to inhibit viral infections via several mechanisms, an ability to neutralize viruses directly may be particularly important. Neutralizing antibody titers are commonly used as predictors of protection from infection, especially in the context of vaccine responses and immunity. Despite the simplicity of the concept, how antibody binding results in virus inactivation is incompletely understood despite decades of research. Flaviviruses have been an attractive system in which to seek a structural and quantitative understanding of how antibody interactions with virions modulate infection because of the contribution of antibodies to both protection and pathogenesis. This review will present a stoichiometric model of antibody-mediated neutralization of flaviviruses and discuss how these concepts can inform the development of vaccines and antibody-based therapeutics. © 2015 Elsevier Inc. All rights reserved.
    Progress in molecular biology and translational science 129C:141-166. DOI:10.1016/bs.pmbts.2014.10.005 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections annually and similar to 3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus.
    Journal of Virology 05/2013; 87(13). DOI:10.1128/JVI.00327-13 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domains II (DII) and III (DIII) of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after pre-incubation at 37°C. However, increasing the time of pre-incubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after pre-incubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4, and suggest that differences in epitope exposure relative to other DENV serotypes affects antibody neutralization and protective activity.
    Journal of Virology 06/2013; DOI:10.1128/JVI.01314-13 · 4.65 Impact Factor
Show more

Preview

Download
0 Downloads
Available from