Therapeutic Efficacy of Antibodies Lacking FcγR against Lethal Dengue Virus Infection Is Due to Neutralizing Potency and Blocking of Enhancing Antibodies

Mount Sinai School of Medicine, United States of America
PLoS Pathogens (Impact Factor: 8.06). 02/2013; 9(2):e1003157. DOI: 10.1371/journal.ppat.1003157
Source: PubMed

ABSTRACT Author Summary
The four dengue virus serotypes (DENV1-4) cause the most prevalent mosquito-transmitted viral disease globally, infecting 50–100 million people annually in tropical and sub-tropical regions worldwide, yet no vaccine or therapy has been licensed to prevent or treat dengue. The greatest risk factor for severe dengue disease is a previous infection with a different serotype, which is thought to be due in part to a phenomenon known as antibody-dependent enhancement (ADE) whereby anti-DENV antibodies from a prior infection augment DENV infection of target Fcg receptor (FcgR)-expressing cells. We previously developed a mouse model that demonstrates antibody-enhanced lethal DENV disease and showed that genetically-modified antibodies incapable of interacting with the FcgR eliminate ADE in vitro and in vivo. In this study, we studied a larger panel of modified MAbs that recognize different regions of the DENV envelope protein. While all modified MAbs acted therapeutically to prevent a lethal, virus-only DENV infection, only certain MAbs effectively protected mice following an antibody-enhanced lethal infection. We determined that therapeutically effective MAbs following an ADE infection worked by competing for binding of enhancing antibodies on the DENV virion. Based on this, we designed an in vitro suppression-of-enhancement assay that predicted the ability of modified MAbs to act therapeutically in vivo.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of a compelling murine model of dengue virus (DENV) infection has been challenging, because DENV clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows investigation of questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination) contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of anti-viral drugs or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV-infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.
    Frontiers in Immunology 04/2014; 5:151. DOI:10.3389/fimmu.2014.00151
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains (CH1-3) of human IgG (pHu-E16scFv-CH1-3) and a tetravalent molecule (Tetra pHu-E16) assembled from pHu-E16scFv-CH1-3 with a second pHu-E16scFv fused to the light chain (LC) constant region. pHu-E16scFv-CH1-3 and Tetra pHu-E16 were efficiently expressed and assembled in plants. To assess the impact of differences in N-linked glycosylation on pHu-E16 variant assembly and function, we expressed additional pHu-E16 variants with various combinations of HC and LC components. Our study revealed that proper pairing of HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal cells. Associated with their distinct N-glycoforms, pHu-E16, pHu-E16scFv-CH1-3 and Tetra pHu-E16 exhibited differential binding to C1q and specific Fcγ receptors (FcγR). Notably, none of the plant-derived Hu-E16 variants showed antibody-dependent enhancement (ADE) activity in CD32A+ human cells, suggesting the potential of plant-produced antibodies to minimize the adverse effect of ADE. Importantly, all plant-derived MAb variants exhibited at least equivalent in vitro neutralization and in vivo protection in mice compared to mammalian cell-produced Hu-E16. This study demonstrates the capacity of plants to express and assemble a large, complex and functional IgG-like tetravalent mAb variant and also provides insight into the relationship between MAb N-glycosylation, FcγR and C1q binding, and ADE. These new insights may allow the development of safer and cost effective MAb-based therapeutics for flaviviruses, and possibly other pathogens.
    PLoS ONE 03/2014; 9(3):e93541. DOI:10.1371/journal.pone.0093541 · 3.53 Impact Factor
  • Article: Dengue.
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue viruses have spread rapidly within countries and across regions in the past few decades, resulting in an increased frequency of epidemics and severe dengue disease, hyperendemicity of multiple dengue virus serotypes in many tropical countries, and autochthonous transmission in Europe and the USA. Today, dengue is regarded as the most prevalent and rapidly spreading mosquito-borne viral disease of human beings. Importantly, the past decade has also seen an upsurge in research on dengue virology, pathogenesis, and immunology and in development of antivirals, vaccines, and new vector-control strategies that can positively impact dengue control and prevention.


Available from