Complexities in assessing the effectiveness of inactivated influenza vaccines

Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia.
Eurosurveillance: bulletin europeen sur les maladies transmissibles = European communicable disease bulletin (Impact Factor: 5.72). 03/2013; 18(7).
Source: PubMed
Download full-text


Available from: Ines Steffens,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background On March 30, a novel influenza A subtype H7N9 virus (A/H7N9) was detected in patients with severe respiratory disease in eastern China. Virological factors associated with a poor clinical outcome for this virus remain unclear. We quantified the viral load and analysed antiviral resistance mutations in specimens from patients with A/H7N9. Methods We studied 14 patients with A/H7N9 disease admitted to the Shanghai Public Health Clinical Centre (SPHCC), China, between April 4, and April 20, 2013, who were given antiviral treatment (oseltamivir or peramivir) for less than 2 days before admission. We investigated the viral load in throat, stool, serum, and urine specimens obtained sequentially from these patients. We also sequenced viral RNA from these specimens to study the mutations associated with resistance to neuraminidase inhibitors and their association with disease outcome. Findings All patients developed pneumonia, seven of them required mechanical ventilation, and three of them further deteriorated to become dependent on extracorporeal membrane oxygenation (ECMO), two of whom died. Antiviral treatment was associated with a reduction of viral load in throat swab specimens in 11 surviving patients. Three patients with persistently high viral load in the throat in spite of antiviral therapy became ECMO dependent. An Arg292Lys mutation in the virus neuraminidase (NA) gene known to confer resistance to both zanamivir and oseltamivir was identified in two of these patients, both also received corticosteroid treatment. In one of them, wild-type sequence Arg292 was noted 2 days after start of antiviral treatment, and the resistant mutant Lys292 dominated 9 days after start of treatment.
    The Lancet 05/2013; 381(9885). DOI:10.1016/S0140-6736(13)61125-3 · 45.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, very large scale sequencing of many clinically important RNA viruses has been complicated by their high population molecular variation, which creates challenges for polymerase chain reaction and sequencing primer design. Many RNA viruses are also difficult or currently not possible to culture, severely limiting the amount and purity of available starting material. Here, we describe a simple, novel, high-throughput approach to Norovirus and Hepatitis C virus whole genome sequence determination based on RNA shotgun sequencing (also known as RNA-Seq). We demonstrate the effectiveness of this method by sequencing three Norovirus samples from faeces and two Hepatitis C virus samples from blood, on an Illumina MiSeq benchtop sequencer. More than 97% of reference genomes were recovered. Compared with Sanger sequencing, our method had no nucleotide differences in 14,019 nucleotides (nt) for Noroviruses (from a total of 2 Norovirus genomes obtained with Sanger sequencing), and 8 variants in 9,542 nt for Hepatitis C virus (1 variant per 1,193 nt). The three Norovirus samples had 2, 3, and 2 distinct positions called as heterozygous, while the two Hepatitis C virus samples had 117 and 131 positions called as heterozygous. To confirm that our sample and library preparation could be scaled to true high-throughput, we prepared and sequenced an additional 77 Norovirus samples in a single batch on an Illumina HiSeq 2000 sequencer, recovering >90% of the reference genome in all but one sample. No discrepancies were observed across 118,757 nt compared between Sanger and our custom RNA-Seq method in 16 samples. By generating viral genomic sequences that are not biased by primer-specific amplification or enrichment, this method offers the prospect of large-scale, affordable studies of RNA viruses which could be adapted to routine diagnostic laboratory workflows in the near future, with the potential to directly characterize within-host viral diversity.
    PLoS ONE 06/2013; 8(6):e66129. DOI:10.1371/journal.pone.0066129 · 3.23 Impact Factor

  • Medicina Clínica 06/2013; 141(2). DOI:10.1016/j.medcli.2013.04.011 · 1.42 Impact Factor
Show more