Article

Synthesis and Immunological Evaluation of a MUC1 Glycopeptide Incorporated into L-Rhamnose Displaying Liposomes

Bioconjugate Chemistry (Impact Factor: 4.82). 02/2013; 24(3). DOI: 10.1021/bc300422a
Source: PubMed

ABSTRACT MUC1 variable number tandem repeats (VNTRs) conjugated to tumor-associated carbo-hydrate antigens (TACAs) have been shown to break self-tolerance in humanized MUC1 trans-genic mice. Therefore, we hypothesize that a MUC1 VNTR TACA-conjugate can be successfully formulated into a liposome-based anti-cancer vaccine. The immunogenicity of the vaccine should be further augmented by incorporating surface displayed L-rhamnose (Rha) epitopes onto the liposomes to take advantage of a natural antibody-dependent antigen uptake mechanism. To validate our hypothesis we synthesized a 20-amino acid MUC1 glycopeptide containing a GalNAc-O-Thr (Tn) TACA by SPPS and conjugated it to a functionalized Toll-like receptor lig-and (TLRL). An L-Rha-cholesterol conjugate was prepared using tetraethylene glycol (TEG) as a linker. The liposome-based anti-cancer vaccine was formulated by the extrusion method using TLRL-MUC1-Tn conjugate, Rha-TEG-cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a total lipid concentration of 30 mM. The stability, homogeneity and size characterization of the liposomes was evaluated by SEM and DLS measurements. The formulated liposomes demonstrated positive binding with both anti-Rha and mouse anti-human MUC1 antibodies. Groups of female BALB/c mice were immunized and boosted with a rhamnose-Ficoll (Rha-Ficoll) conjugate formulated with alum as adjuvant to generate the appropriate concentration of anti-Rha antibodies in the mice. Anti-Rha antibody titers were >25-fold higher in the groups of mice immunized with the Rha-Ficoll conjugate than the non-immunized control groups. The mice were then immunized with the TLRL-MUC1-Tn liposomal vaccine formulated either with or without the surface displaying Rha epitopes. Sera collected from the groups of mice initially immunized with Rha-Ficoll and later vaccinated with the Rha-displaying TLRL-MUC1-Tn liposomes showed a >8-fold increase in both anti-MUC1-Tn and anti-Tn antibody titers in comparison to the groups of mice that did not receive Rha-Ficoll. T-cells from BALB/c mice primed with a MUC1-Tn peptide demonstrated increased proliferation to the Rha-liposomal vaccine in the presence of antibodies isolated from Rha-Ficoll immunized mice compared to nonimmune mice, supporting the proposed effect on antigen presentation. The anti-MUC1-Tn antibodies in the vaccinated mice serum recognized MUC1 on human leukemia U266 cells.

0 Followers
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mucin MUC1 is overexpressed and aberrantly glycosylated by many epithelial cancer cells manifested by truncated O-linked saccharides. Although tumor-associated MUC1 has generated considerable attention because of its potential for the development of a therapeutic cancer vaccine, it has been difficult to design constructs that consistently induce cytotoxic T-lymphocytes (CTLs) and ADCC-mediating antibodies specific for the tumor form of MUC1. We have designed, chemically synthesized, and immunologically examined vaccine candidates each composed of a glycopeptide derived from MUC1, a promiscuous Thelper peptide, and a TLR2 (Pam3CysSK4) or TLR9 (CpG-ODN 1826) agonist. It was found that the Pam3CysSK4-containing compound elicits more potent antigenic and cellular immune responses, resulting in a therapeutic effect in a mouse model of mammary cancer. It is thus shown, for the first time, that the nature of an inbuilt adjuvant of a tripartite vaccine can significantly impact the quality of immune responses elicited against a tumor-associated glycopeptide. The unique adjuvant properties of Pam3CysSK4, which can reduce the suppressive function of regulatory T cells and enhance the cytotoxicity of tumor-specific CTLs, are likely responsible for the superior properties of the vaccine candidate 1.
    ChemBioChem 07/2014; 15(10). DOI:10.1002/cbic.201402077 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An L-rhamnose-based hydrogelator self-assembles to form nanofibrils, which, contrasting to the properties of monomeric L-rhamnose, suppress the antibody response of mice to phycoerythrin (PE), a fluorescent protein antigen. As the first example of the supramolecular assemblies of a saccharide to suppress immunity, this work illustrates a new approach of immunomodulation.
    Organic & Biomolecular Chemistry 07/2014; 12(35). DOI:10.1039/C4OB01362J · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An α-l-rhamnosyl ceramide (1, α-l-RhaCer) has been prepared that was recognized by anti-l-rhamnose (anti-Rha) antibodies. During these studies we explored the use of an α-l-rhamnosyl thioglycoside and a trichloroacetimidate as a glycosyl donors. Subsequently, the acceptors desired for glycosylation, 3-O-benzoylazidosphingosine or 3-O-alloxycarbonylsphingosine, were prepared from d-xylose. The thioglycoside donor, 2,3,4-tri-O-acetyl-1-(4-tolyl)thio-α-l-rhamnopyranoside, and the trichloroacetimidate donor, 2,3,4-tri-O-acetyl-1-(2,2,2-trichloroethanimidate)-α-l-rhamnopyranoside, were synthesized in 50% and 78% yield overall, respectively. The synthesis of the glycosylation acceptor employed an addition-fragmentation olefination that was successfully carried out in 53% yield. With the successful synthesis of key intermediates, α-l-RhaCer (1) was prepared without any insurmountable obstacles. Anti-Rha antibodies were prepared in BALB/c mice by immunizing them with rhamnose-ovalbumin (Rha-Ova) with Sigma Adjuvant System (SAS) and the anti-l-Rha antibodies were isolated from the blood sera. Liposomes and EL4 tumor cells were used as model systems to demonstrate the ability of 1 to insert into a lipid bilayer. The interaction of the liposomes or the EL4 cells with α-l-RhaCer (1) and anti-Rha antibodies were investigated by fluorescence microscopy and flow cytometry, respectively, to confirm the ability of glycolipid 1 to be displayed on the tumor cell surface as well as the ability to be recognized by anti-Rha antibodies.
    Bioorganic & Medicinal Chemistry 10/2014; 22(19). DOI:10.1016/j.bmc.2014.08.002 · 2.95 Impact Factor