Article

Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson's disease.

1 Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark.
Brain (Impact Factor: 10.23). 02/2013; DOI: 10.1093/brain/awt027
Source: PubMed

ABSTRACT Parkinson's disease results from the degeneration of dopaminergic neurons in the substantia nigra, manifesting as a spectrum of motor, cognitive and affective deficits. Parkinson's disease also affects reward processing, but disease-related deficits in reinforcement learning are thought to emerge at a slower pace than motor symptoms as the degeneration progresses from dorsal to ventral striatum. Dysfunctions in reward processing are difficult to study in Parkinson's disease as most patients have been treated with dopaminergic drugs, which sensitize reward responses in the ventral striatum, commonly resulting in impulse control disorders. To circumvent this treatment confound, we assayed the neural basis of reward processing in a group of newly diagnosed patients with Parkinson's disease that had never been treated with dopaminergic drugs. Thirteen drug-naive patients with Parkinson's disease and 12 healthy age-matched control subjects underwent whole-brain functional magnetic resonance imaging while they performed a simple two-choice gambling task resulting in stochastic and parametrically variable monetary gains and losses. In patients with Parkinson's disease, the neural response to reward outcome (as reflected by the blood oxygen level-dependent signal) was attenuated in a large group of mesolimbic and mesocortical regions, comprising the ventral putamen, ventral tegmental area, thalamus and hippocampus. Although these regions showed a linear response to reward outcome in healthy individuals, this response was either markedly reduced or undetectable in drug-naive patients with Parkinson's disease. The results show that the core regions of the meso-cortico-limbic dopaminergic system, including the ventral tegmental area, ventral striatum, and medial orbitofrontal cortex, are already significantly compromised in the early stages of the disease and that these deficits cannot be attributed to the contaminating effect of dopaminergic treatment.

Download full-text

Full-text

Available from: Carsten Buhmann, Jul 04, 2015
2 Followers
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence from fMRI studies suggests that humor processing is a specific social cognitive-affective human function that comprises two stages. The first stage (cognitive humor component) involves the detection and resolution of incongruity, and is associated with activity in temporo-occipito-parietal brain areas. The second stage (emotional humor component) comprises positive feelings related to mirth/reward, and is linked with reward-related activity in mesocorticolimbic circuits. In healthy adults, humor processing was shown to be moderated by temperament traits like intro-/extraversion, neuroticism, or social anxiety, representing risk factors for psychopathology. However, comparable data from early developmental stages is crucially lacking. Here, we report for the first time data from 22 children (ages 6 to 13) revealing an influence of temperament on humor processing. Specifically, we assessed the effects of Emotionality, Shyness, and Sociability, which are analogous to neuroticism, behavioral inhibition/fear and extraversion in adults. We found Emotionality to be positively, but Shyness negatively associated with brain activity linked with both cognitive and emotional humor components. In addition, Shyness and Sociability were positively related to activity in the periaqueductal gray region during humor processing. These findings are of potential clinical relevance regarding the early detection of childhood psychopathology. Previous data on humor processing in both adults and children furthermore suggest that intelligence (IQ) supports incongruity detection and resolution, whereas mirth and associated brain activity diminishes with increasing age. Here, we found that increasing age and IQ were linked with stronger activity to humor in brain areas implicated in the cognitive component of humor. Such data suggest that humor processing undergoes developmental changes and is moderated by higher IQ scores, both factors likely improving incongruity detection and resolution.
    Neuropsychologia 09/2013; 51(13). DOI:10.1016/j.neuropsychologia.2013.09.028 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with Parkinson's disease with deep brain stimulation in the subthalamic nucleus postoperatively often display higher impulsivity and therefore may experience difficulties in social interactions. Here, we examined social interactions of patients with Parkinson's disease with and without deep brain stimulation in the subthalamic nucleus in competitive situations. We hypothesized altered self-estimation and risk-seeking behaviour in this patient group induced by deep brain stimulation in the subthalamic nucleus. To test the hypothesis, an experimental setting was used in which participants performed a calculation task and chose their preferred compensation. Based on their actual calculation performance, more patients with Parkinson's disease with deep brain stimulation chose a competitive tournament compensation. Assuming rational behaviour, this self-selection pattern reflects increased risk tolerance. Since patients who performed in the lowest quartile chose the tournament option, the data suggest that deep brain stimulation in the subthalamic nucleus results in a loss of the correct reference frame against which patients with Parkinson's disease evaluate their performance. The stimulation-induced combination of overestimation of their own performance, increased risk-taking, and preference for competitive environments despite poor performance is likely to impact considerably on the patients' social and work life.
    Brain 09/2013; DOI:10.1093/brain/awt241 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apathy is one of the most common and debilitating nonmotor manifestations of Parkinson's disease (PD) and is characterized by diminished motivation, decreased goal-directed behavior, and flattened affect. Despite its high prevalence, its underlying mechanisms are still poorly understood, having been associated with executive dysfunction, and impaired emotional processing and decision making. Apathy, as a syndrome, has recently been associated with reduced activation in the ventral striatum, suggesting that early- to middle-stage Parkinson's disease patients with this manifestation may have a compromised mesocorticolimbic dopaminergic pathway and impaired incentive processing. To test this hypothesis, we measured the amplitude of the feedback-related negativity, an event-related brain potential associated with performance outcome valence, following monetary gains and losses in human PD patients (12 women) and healthy controls (6 women) performing a gambling task. Early- to middle-stage PD patients presenting clinically meaningful symptoms of apathy were compared with nonapathetic PD patients and healthy controls. Patients with cognitive impairment, depression, and other psychiatric disturbances were excluded. Results showed that the amplitude of the feedback-related negativity, measured as the difference wave in the event-related brain potential between gains and losses, was significantly reduced in PD patients with apathy compared with nonapathetic patients and healthy controls. These findings indicate impaired incentive processing and suggest a compromised mesocorticolimbic pathway in cognitively intact PD patients with apathy.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2014; 34(17):5918-26. DOI:10.1523/JNEUROSCI.0251-14.2014 · 6.75 Impact Factor