Article

Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions

School of Medicine, University of Tasmania, Hobart, TAS, Australia
Blood (Impact Factor: 9.78). 02/2013; 121(20). DOI: 10.1182/blood-2012-09-456897
Source: PubMed

ABSTRACT Twenty-five years ago, the gene responsible for the autosomal recessive disease ataxia- telangiectasia (A-T) was localized to 11q22.3-23.1. It was eventually cloned in 1995. Many independent laboratories have since demonstrated that in replicating cells ATM is predominantly a nuclear protein that is involved in the early recognition and response to double-stranded DNA breaks. ATM is a high molecular weight PI3K-family kinase. ATM also plays many important cytoplasmic roles where it phosphorylates hundreds of protein substrates that activate and coordinate cell signaling pathways involved in cell cycle checkpoints, nuclear localization, gene transcription and expression, the response to oxidative stress, apoptosis, nonsense mediated decay, and others. Appreciating these roles helps to provide new insights into the diverse clinical phenotypes exhibited by A-T patients -- children and adults alike -- which include neurodegeneration, high cancer risk, adverse reactions to radiation and chemotherapy, pulmonary failure, immunodeficiency, glucose transporter aberrations, insulin-resistant diabetogenic responses, and distinct chromosomal and chromatin changes. Most exciting recently is the ATM-dependent pathology encountered in mitochondria, leading to inefficient respiration and energy metabolism and the excessive generation of free radicals that themselves create life-threatening DNA lesions that must be repaired within minutes to minimize individual cell losses.

0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ataxia-telangiectasia mutated (ATM) protein kinase is well known to play a significant role in the response to double stranded DNA breaks in the nucleus. Recently, it has become apparent that ATM is also involved in a large number of cytoplasmic processes and responses, some of which may contribute to metabolic and cardiovascular complications when disrupted. Due to its involvement in these processes, therapeutic activation of ATM could potentially be a novel approach for the prevention or treatment of cardiovascular disease. However, relatively little is currently known about the cardiovascular role of ATM. In this review, we highlight studies that have shed some light on the role of ATM in the cardiovascular context, namely in oxidative stress, atherosclerosis and metabolism, insulin resistance and cardiac remodeling.
    Cardiovascular Drugs and Therapy 02/2015; DOI:10.1007/s10557-015-6571-z · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress plays a key role in carcinogenesis. Oxidative damage to cell components can lead to the initiation, promotion and progression of cancer. Oxidative stress is also a distinctive sign in several genetic disorders characterized by a cancer predisposition such as ataxia-telangiectasia, Fanconi anemia, Down syndrome, Beckwith-Wiedemann syndrome and Costello syndrome. Taking into account the link between oxidative stress and cancer, the capacity of antioxidant agents to prevent or delay neoplastic development has been tested in various studies, both in vitro and in vivo, with interesting and promising results. In recent years, research has been conducted into the molecular mechanisms linking oxidative stress to the pathogenesis of the genetic syndromes we consider in this review, with the resulting identification of possible new therapeutic targets. The aim of this review is to focus on the oxidative mechanisms intervening in carcinogenesis in cancer-prone genetic disorders and to analyze the current status and future prospects of antioxidants.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.
    International Journal of Molecular Sciences 05/2015; 16(5):9431-9449. DOI:10.3390/ijms16059431 · 2.34 Impact Factor