Article

Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions.

School of Medicine, University of Tasmania, Hobart, TAS, Australia
Blood (Impact Factor: 9.78). 02/2013; DOI: 10.1182/blood-2012-09-456897
Source: PubMed

ABSTRACT Twenty-five years ago, the gene responsible for the autosomal recessive disease ataxia- telangiectasia (A-T) was localized to 11q22.3-23.1. It was eventually cloned in 1995. Many independent laboratories have since demonstrated that in replicating cells ATM is predominantly a nuclear protein that is involved in the early recognition and response to double-stranded DNA breaks. ATM is a high molecular weight PI3K-family kinase. ATM also plays many important cytoplasmic roles where it phosphorylates hundreds of protein substrates that activate and coordinate cell signaling pathways involved in cell cycle checkpoints, nuclear localization, gene transcription and expression, the response to oxidative stress, apoptosis, nonsense mediated decay, and others. Appreciating these roles helps to provide new insights into the diverse clinical phenotypes exhibited by A-T patients -- children and adults alike -- which include neurodegeneration, high cancer risk, adverse reactions to radiation and chemotherapy, pulmonary failure, immunodeficiency, glucose transporter aberrations, insulin-resistant diabetogenic responses, and distinct chromosomal and chromatin changes. Most exciting recently is the ATM-dependent pathology encountered in mitochondria, leading to inefficient respiration and energy metabolism and the excessive generation of free radicals that themselves create life-threatening DNA lesions that must be repaired within minutes to minimize individual cell losses.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ataxia-telangiectasia (A-T) is a rare disease characterized by neurodegenerative alterations, telangiectasia, primary immunodeficiency, extreme sensitivity to radiation, and susceptibility to neoplasms. A-T patients have inactivation of ataxia-telangiectasia-mutated (ATM) protein, which controls DNA double-strand break repair and is involved in oxidative stress response, among other functions; dysfunctional control of reactive oxygen species may be responsible for many of the clinical manifestations of this disease. To the best of our knowledge, hepatic lesions of steatohepatitis have not previously been reported in A-T patients. The present study reports the case of a 22-year-old man diagnosed with A-T at the age of 6 years who was referred to our Digestive Disease Unit with a three-year history of hyperlipidemia and liver test alterations. Core liver biopsy showed similar lesions to those observed in nonalcoholic steatohepatitis. Immunohistochemical staining disclosed the absence of ATM protein in hepatocyte nuclei. We suggest that the liver injury may be mainly attributable to the oxidative stress associated with ATM protein deficiency, although other factors may have made a contribution. We propose the inclusion of A-T among the causes of nonalcoholic steatohepatitis, which may respond to antioxidant therapy.
    Case reports in hepatology. 01/2014; 2014:761250.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ataxia-telangiectasia mutated (ATM) gene encodes a multifunctional kinase, which is linked to important cellular functions. Women heterozygous for ATM mutations have an estimated relative risk of developing breast cancer of 3.8. However, the pattern of ATM mutations and their role in breast cancer etiology has been controversial and remains unclear. In the present study, we investigated the frequency and spectrum of ATM mutations in a series of sporadic breast cancers and controls from the Brazilian population. Using PCR-Single Strand Conformation Polymorphism (SSCP) analysis and direct DNA sequencing, we screened a panel of 100 consecutive, unselected sporadic breast tumors and 100 matched controls for all 62 coding exons and flanking introns of the ATM gene. Several polymorphisms were detected in 12 of the 62 coding exons of the ATM gene. These polymorphisms were observed in both breast cancer patients and the control population. In addition, evidence of potential ATM mutations was observed in 7 of the 100 breast cancer cases analyzed. These potential mutations included six missense variants found in exon 13 (p.L546V), exon 14 (p.P604S), exon 20 (p.T935R), exon 42 (p.G2023R), exon 49 (p.L2307F), and exon 50 (p.L2332P) and one nonsense mutation in exon 39 (p.R1882X), which was predicted to generate a truncated protein. Our results corroborate the hypothesis that sporadic breast tumors may occur in carriers of low penetrance ATM mutant alleles and these mutations confer different levels of breast cancer risk.
    SpringerPlus 01/2015; 4:23.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is often refractory to radiotherapy but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer, and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ataxia-telangiectasia mutated (ATM) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy, and significantly prolonged survival, thus suggesting the likelihood of translational applications. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    The Journal of biological chemistry. 01/2015;